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Abstract The advent of large-scale distributed systems poses unique engineering chal-
lenges. In open systems such as the internet it is not possible to prescribe the behaviour
of all of the components of the system in advance. Rather, we attempt to design infrastruc-
ture, such as network protocols, in such a way that the overall system is robust despite the
fact that numerous arbitrary, non-certified, third-party components can connect to our sys-
tem. Economists have long understood this issue, since it is analogous to the design of the
rules governing auctions and other marketplaces, in which we attempt to achieve socially-
desirable outcomes despite the impossibility of prescribing the exact behaviour of the market
participants, who may attempt to subvert the market for their own personal gain. This field
is known as ”mechanism design”: the science of designing rules of a game to achieve a spe-
cific outcome, even though each participant may be self-interested. Although it originated in
economics, mechanism design has become an important foundation of multi-agent systems
(MAS) research. In a traditional mechanism design problem, analytical methods are used to
prove that agents’ game-theoretically optimal strategies lead to socially desirable outcomes.
In many scenarios, traditional mechanism design and auction theory yield clear-cut results;
however, there are many situations in which the underlying assumptions of the theory are vi-
olated due to the messiness of the real-world. In this paper we review alternative approaches
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to mechanism design which treat it as an engineering problem and bring to bear engineering
design principles, viz.: iterative step-wise refinement of solutions, and satisficing instead of
optimization in the face of intractable complexity. We categorize these approaches under the
banner of evolutionary mechanism design.

1 Introduction

Much work in the design of multi-agent systems (MAS) has focused on the design and en-
gineering of individual agents; for example, the problems of designing and implementing
effective trading strategies for agents participating in e-commerce market places, or the de-
sign of effective learning algorithms for adaptive agents. However, increasingly attention is
being turned to the design of the infrastructure, or the environment, underlying the inter-
actions between individual agents in a MAS; for example, the problem of designing rules
governing the operation of an e-commerce market institution, or the design of interaction
protocols governing agent argumentation. The justification for the latter approach is that of-
ten as MAS designers we are responsible for engineering open systems, in which we do not
have control over the exact behavior of the agents connecting to our system; these agents
are, after all, autonomous. Rather, we build a set of standards and protocols that define a
framework within which our agents are free to interact, and if we have designed this frame-
work to be robust, the system as a whole will exhibit our desired design properties despite
the fact that it consists of possibly millions of autonomous agents interacting with each other
in ways we have not prescribed in advance.

Economists have studied similar design problems in the context of auction theory (Klem-
perer, 2004a; Krishna, 2002) and mechanism design (Jackson, 2003; Varian, 1995). In a
mechanism design problem, the task of the designer is to choose the rules of the auction in
such a way that the designer’s objectives are met when agents play their optimal strategies.
One of the main difficulties in solving this problem is computing the optimal strategies, as
the best strategy to play depends on what strategies are being played by other agents; the
number of agents can vary significantly, and the strategy space can be very large. The stan-
dard technique is to view each possible set of auction rules as defining a particular game,
and then to use game theory to “solve” this game by finding the set of strategies comprising
a Nash equilibrium of the game — the set of strategies that are best responses to each other.
For many scenarios, especially for single-sided auctions comprising a single seller and mul-
tiple buyers, auction theory and mechanism design yield clear-cut results. However, in the
general case the problem is analytically intractable, especially when it comes to analysing
double-sided auctions, also known as exchanges, in which we allow multiple sellers as well
as multiple-buyers. In the next section we shall describe our motivation for studying double-
sided auctions.

A double-auction mechanism is a generalization of an auction in which there are multi-
ple sellers as well as multiple buyers, and both buyers and sellers are allowed to exchange
offers simultaneously. Since double-auctions allow dynamic pricing on both the supply side
and the demand side of the marketplace, their study is of great importance, both to theoretical
economists (Klemperer, 2004b), and those seeking to implement real-world market places.
On the one hand, economists who are interested in theories of price formation in idealized
models of general markets have often turned to exchange-like models such as Walrasian
tâtonnement, to describe and understand the price-formation process (Bryant, 2000), and on
the other hand, variants of the double-auction are used in large real-world exchanges to trade
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commodities in marketplaces where supply and demand fluctuate rapidly, such as markets
for stocks, futures, and their derivatives.

However, the models of exchanges traditionally used by economists in general equilib-
rium theory are often simplified for the purposes of analytical tractability to such an extent
that they are of scant relevance to the designers of real-world exchanges, and even, it is some-
times argued, of scant relevance to the theoretical modelling of markets (Fisher, 1983). For
example, one important simplification often made is that the number of agents participating
in a market is very large; this simplification allows relative market power and consequent
strategic effects to be ignored. However, in many real-world marketplaces, such as deregu-
lated wholesale electricity markets, there may be relatively few competitors on one or both
sides of the market. With small numbers of participants, general equilibrium models break
down (Medio and Gallo, 1992, p. 10) because they fail to allow for market power, and the
potential gains of strategic behavior, of participants.

1.1 Auction Theory & Mechanism Design

Auction theory can be thought of as an alternative approach to general equilibrium theory,
in which we build a more sophisticated micro-model of the marketplace, and we use game-
theoretic techniques to analyse the rational behavior of individual agents faced with different
pricing institutions. Whereas neoclassical equilibrium theory often abstracts away from the
details of individual agents, game-theoretic models allow economists to build sophisticated
micro-models of individual agents’ reasoning and preferences. In many scenarios, especially
in analyzing single-sided monopoly markets, these models have been spectacularly success-
ful to the extent where they have been directly applied to the design of real-world auctions
for high-value government and corporate assets (Klemperer, 2002). However, in other prac-
tical scenarios, especially when it comes to analyzing and designing double-sided markets,
such as exchanges, there are still a number of problems with the theory, which we shall
briefly review.

Auction-theorists typically analyze a proposed market institution by defining a set of
design objectives, and then proceed to show that these design objectives are brought about
when rational agents follow their best strategies according to a game-theoretic analysis.
The task of choosing the rules of the market institution so that these objectives are brought
about is called mechanism design. The typical design objectives considered by mechanism
designers are:

Allocative efficiency: The outcome of using the mechanism should be optimal in some de-
fined sense, for example, the total surplus generated should equal the available surplus
in competitive equilibrium.

Budget balance: No outside subsidy inwards or transfers outwards are required for a deal to
be reached.

Individual rationality: The expected net benefit to each participant from using the mecha-
nism should be no less than the net benefit of any alternative.

Incentive compatibility: Participants should not be able to gain an advantage from non-
truth-telling behavior.

We would like auction mechanisms to satisfy all of these properties. However, this is not
possible in many situations. For example, the impossibility result of (Myerson and Satterth-
waite, 1983) demonstrates that no double-sided auction mechanism can be simultaneously
efficient, budget-balanced and individually-rational. Moreover, many of the underpinnings
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of the theory assume that designers’ interests are restricted to only the aforementioned prop-
erties. For example, the revelation principle (Krishna, 2002, p. 62) states that, without loss
of generality, we may safely restrict attention to mechanisms in which agents reveal their
types truthfully. However, this result does not take into account the potential cost or other
practicalities of polling agents for their type information. Once minimizing the cost of rev-
elation is introduced as a design objective, the revelation principle ceases to hold, because
there may exist partial-revelation mechanisms with non-truthful equilibria which sacrifice
incentive-compatibility for expedience of revelation. This is of more than academic interest,
since in real-world electronic exchanges it is rarely possible to poll all agents for their valua-
tions before clearing the market; hence the continuous double-auction, in which we execute
the clearing operation as new offers arrive, thus increasing liquidity (transaction throughput)
at the expense of incentive-compatibility.

In designing market places, as with any other engineering problem, we often need to
make such trade-offs between different objectives depending on the exact requirements and
scenario at hand. We can often satisfactorily solve such multi-objective optimisation prob-
lems, provided that we have some kind of quantitative assessment of each objective, yet
classical auction-theory provides only a binary yes or no indication of whether each of its
limited design objectives is achievable, making it extremely difficult to compare the different
trade-offs.

Further complications arise when we attempt to use auction-theory to analyze existing
(“legacy”) market institutions. Exchanges such as the London Stock Exchange1 have been
in existence far longer than game-theory and auction-theory, thus, unsurprisingly, the orig-
inal rules of the institution were not necessarily based on sound game-theoretic or auction-
theoretic principles. Moreover, it is unrealistic to expect that core financial institutions such
as these radically alter their rules overnight in response to the latest fashionable develop-
ments in auction-theory or game-theory. Rather, it may be more salient to view financial
institutions evolving gradually and incrementally in response to a changing environment.
Similarly, agents participating in these institutions do not necessarily instantaneously and
simultaneously adjust their trading behavior to the theoretical optimum strategy; for exam-
ple, adoption of a new trading strategy may spread through a population of traders as word
of its efficacy diffuses in a manner akin to mimetic evolution.2 Thus, we may think of the
institutions we see today as the outcome of a co-evolutionary adaptation between financial
institutions on the one hand, and trading strategies on the other.

The issue of legacy institutions has ramifications for mechanism design; in these con-
texts the choice of adjustments to the auction rules may be tightly constrained by existing
infrastructure, both physical and social; thus it may be necessary to examine the attainabil-
ity of equilibria under the new design given existing strategic behavior in the legacy design.
Classical auction theory relies on classical game-theory which in turn says nothing about
the dynamics of adjustment to equilibrium.

For such applications, we need to turn to models of evolution and learning in strategic
environments; models that we collectively categorize under the banner of evolutionary game
theory. Models of learning and evolution as applied to agents’ strategies are not new. Where
our approach differs, however, is in the application of models of learning and evolution to
the market mechanism itself, a new field we call evolutionary mechanism design.

1 www.londonstockexchange.com
2 The adoption by derivatives traders of the Black-Scholes equation for option pricing provides an example

(MacKenzie, 2003).
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The remainder of this paper is outlined as follows. In Section 2 we review the literature
on the application of AI to the modelling of agent interactions in strategic environments such
as stock markets and distributed computing systems. In Section 3 we review the emerging
literature on the application of AI to the design of the infrastructure underlying these in-
teractions, i.e. the mechanism design problem, with an emphasis on own work in this area.
Finally we conclude in Section 4 and discuss future research directions.

2 Agent-based Economics

It has long been understood that Artificial Intelligence (AI) has strong roots in economics
(Russell and Norvig, 2003, p. 9); whilst the latter is traditionally concerned with idealized
models of agents interacting in realistically complex environments, the former has placed
more emphasis on realistically complex agents interacting in idealized environments. In-
deed, one of the pioneers of AI, Herbert Simon was originally motivated in much of his
AI research by attempts to build more complex models of agents’ behaviour in economic
environments (see, for example Clarkson and Simon (1960)).

Whilst the broad relationships between the two disciplines were generally understood
from the inception of AI, it was not until the late twentieth century and the birth of the Multi-
Agent Systems (MAS) discipline that highly specialised theories and concepts were imported
from economics into AI. Boutilier et al (1997) were amongst the first to clearly articulate the
specific relationships between economics and AI. The particular significance of mechanism
design in the context of multi-agent systems was first discussed by Rosenschein and Zlotkin
(1994) and Varian (1995), as summarised by Wellman:

“Within economics, the problem of synthesizing an interaction protocol via which
rational agents achieve a socially desirable end is called mechanism design. This is
exactly the problem we face in designing distributed software systems, which sug-
gests an opportunity to exploit existing economic ideas. ” (Wellman, 1995)

More recently the theme of incentive engineering has been taken up in the wider com-
puter science community in contexts as diverse as information security (Anderson, 2001),
and computer networking:

“If an artifact (a new congestion control protocol, a new caching scheme, a new
routing algorithm, etc.) is demonstrated to have superior performance, this does not
necessarily mean that it will be successful. For the artifact to be ‘fit’, there must exist
a path leading from the present situation to its prevalence. This path must be paved
with incentives that will motivate all kinds of diverse agents to adopt it, implement
it, use it, interface with it or just tolerate it. In the absence of such a path, the most
clever, fast and reliable piece of software may stay just that. All design problems are
now mechanism design problems.” (Papadimitriou, 2001)

2.1 The Double Auction

Our work focuses specifically on a particular class of economic mechanism — the double
auction. As discussed in the previous section, the double auction has come to be recognized
as an important benchmark problem, in both economics and multi-agent systems. In partic-
ular, a landmark workshop held in Santa Fe motivated much contemporary research in this
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area by highlighting the difficulty of agents’ decision problems in non-idealized variants of
this type of marketplace, and the Santa Fe double-auction tournament was one of the first
studies which used advanced agent-based simulation in order to explore the properties of this
mechanism (Friedman and Rust, 1991). To this day the double-auction still represents an im-
portant benchmark problem by simultaneously admitting of precise representations whilst
stretching the bounds of both analytical tractability and computational brute-force. In the
following we will review analytical and computational approaches to the agents’ decision
problem (traditionally the focus of AI), and the mechanism-design problem (traditionally
the focus of economics) in turn.

2.1.1 Analytical approaches

The core of the analytic approach to agents’ decision problems is based around the theory
of n-player non-zero-sum games as formulated by Nash (1950). Nash’s insight was that in
any interaction of preference-maximising agents whose outcome depends on the joint set of
actions — that is, a game — any given agent has a theoretical best response to the actions
chosen by the other agents. By applying this reasoning recursively we arrive at the concept of
a Nash equilibrium; a situation in which every agent chooses actions that are best-responses
to the best-responses of other agents. Nash proved that provided players have the option of
randomising over their choice of strategies, then every n-player game possesses at least one
equilibrium solution, thus providing a powerful theoretical framework not only for optimiz-
ing one’s strategy in such an interaction (choosing a best-response), but also in predicting a
likely combination of joint actions (Nash equilibrium). Many refinements have since been
made to Nash’s theory, some of the most important being the concept of a Bayesian-Nash
equilibrium (BNE) (Harsanyi, 1967), which deals with situations where payoffs are depen-
dent on some private unobservable properties of an agent — the agent’s type (for example,
the particular cards that an agent holds in a game of poker), and the theory of evolutionary
games (Maynard-Smith, 1982; Gintis, 2000) which overlays a dynamic model of gradual
strategy-adjustment on top of the static equilibria of Nash’s original formulation.

Game-theory provides a very powerful general framework for solving agent interactions
in theory, but it was William Vickrey (Vickrey, 1961, 1962) who first saw the fundamental
economic significance of auctions and who first applied the theory of games in this area
giving birth to modern auction theory, as summarised by Krishna (2002).

Auction theory provides a comprehensive theoretical framework for analysing single
sided auctions — that is, auctions with a single seller and multiple buyers. However, double-
sided auctions — auctions with multiple sellers as well as multiple buyers — remain some-
thing of a theoretical oddity despite their increasing prevalence in economic reality. Vickrey
(1961) demonstrated that no double-sided mechanism could simultaneously achieve the in-
centive compatibility, individual-rationality, budget-balance and efficiency desiderata. Sub-
sequently d’Aspremont and Gérard-Varet (1979) demonstrated the existence of a budget-
balanced mechanism that was able to achieve incentive-compatibility in Bayesian-Nash
equilibrium3 at the expense of individual rationality. McAfee (1992) provided a formula-
tion of a double-sided single-unit mechanism that admitted of a dominant-strategy game-
theoretic solution at the expense of budget-balance, and (Huang et al, 2002) later refined
this idea to the multi-unit case. However Myerson and Satterthwaite (1983); Satterthwaite
and Williams (1993) were able to extend Vickrey’s result and demonstrated that for the case

3 Bayesian-Nash incentive-compatibility merely requires truth-telling as Bayesian-Nash equilibrium of
the game, rather than the usual stricter requirement that truth-telling is a dominant-strategy.
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of a single buyer and seller there does not exist a mechanism that can simultaneously achieve
incentive-compatibility, budget-balance, efficiency and individual-rationality even when the
incentive-compatibility criteria is relaxed from dominant-strategy to BNE, and hence there
is no double-sided mechanism for achieving all the usual desiderata required by auction
theorists in the general case.

Although there is no unequivocal and complete game-theoretic analysis of the double-
auction in the general case, that is not to say, however, that double-sided mechanisms do
not admit of game-theoretic solutions in specific instances. The first equilibrium analysis
for a double auction was that of Chatterjee and Samuelson (1983), in the paper in which
they introduced the idea of the k-double auction4, which we will discuss in the next chapter,
albeit only for the two trader case. In this initial paper, Chatterjee and Samuelson show that
there is an equilibrium solution, assuming independent private values.

Considerable work has since been carried out extending this result. First, Williams
(1991, 1988) showed the existence of equilibria in the buyer’s bid double auction — this is
an easier auction to analyse since the dominant strategy for sellers is to bid their true value,
thus fixing one side of the auction and, as Rustichini et al (1994) points out, ensuring that
the market has a unique equilibrium5. The same authors subsequently showed the existence
of equilibria in the many-trader version of the k-double auction (Satterthwaite and Williams,
1993), at the same time suggesting that the modified BBDA has no equilibrium. This work
was followed by Jackson and Swinkels (2001, 2005), who showed the existence of equi-
libria, though not monotonic equilibria, under a wide range of conditions. Next, Reny and
Perry (2003) showed that monotonic equilibria exist if offers are restricted to discrete values,
and Fudenberg et al (2003) showed that this result could be extended to continuous values
(which Jackson and Swinkels (2005) argue is “a very useful approximation . . . allowing one
. . . to use calculus to characterise equilibria”) provided that the auction was large. Finally,
Kadan (2004) showed that an increasing equilibrium exists for just two traders with affiliated
values.

2.1.2 Empirical and agent-based approaches

Whilst double-auction mechanisms stretch the bounds of auction-theory by admitting of no
unequivocal dominant strategy solution in the general case, the theory of games itself has
come under scrutiny as a plausible general-purpose model of the strategic behavior of com-
plex agents (human or otherwise); for example, Goeree and Holt (2001) give an overview
of ten simple games where the game-theoretic solution is easily obtainable yet intuitively
implausible. This has led to a re-examination of the use of empirical methods in economics,
whereby experiments are conducted with actual agents trading in a market-institution under
laboratory conditions. The agents may be human, in which case the methodology is some-
times called experimental economics (see for example Kagel and Roth (1995)), or more
generally they may be implemented in the form of a computer-program; Tesfatsion (2002)
coined the phrase agent-based computational economics (ACE), to describe this approach.

Experimental economics using human agents has the advantage that a large supply of
agents are available “off the shelf” so to speak; hence not surprisingly experiments using
human agents were among the first ACE investigations of the double-auction market. Smith

4 Though not under this name — they refer to the price setting rule as a “bargaining rule”.
5 Note that all results for the BBDA, the 1-DA, are symmetric with those for the k-double auction in which

the transaction price is determined by the price offered by the highest asking seller that trades, the 0-DA
(Rustichini et al, 1994).
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(1962) was the first to study the double-auction under laboratory conditions using human-
agents, and his results suggested that human subjects were able to extract close to theoreti-
cally optimal surplus from the market.

One of the disadvantages of human-based experimental economics compared with agent-
based computational economics is that it is not always straightforward to analyze the nec-
essary cognitive mechanisms required to achieve a particular economic outcome. In con-
trast Gode and Sunder (1993) performed one of the earliest agent-based experiments on the
double-auction with the aim of investigating the lower-bounds on the amount of cognitive
machinery required to achieve efficient outcomes. They were able to demonstrate that their
minimal zero-intelligence strategies, implemented in the form of computer programs, were
able to achieve highly efficient outcomes, suggesting that the double-auction mechanism
was highly robust in the sense that it required minimal rationality on behalf of participants.
Their results were not unequivocal, however; Cliff and Bruten (1997) demonstrated that
some aspects of Gode and Sunder’s results were highly contingent on the particular dis-
tribution of agents’ valuations that were used in the original experiments, and that a more
sophisticated and robust strategy, zero-intelligence plus (ZIP) was required in order more
accurately fit the behaviour of human subjects under less restrictive assumptions.

This was not the end of the story, though, since when analysing a market mechanism
ideally we want to demonstrate the existence of a dominant strategy, and that design objec-
tives such as high-efficiency outcomes are the result of agents adopting this particular strat-
egy. For example, in many single-sided auctions one of the desiderata usually considered is
incentive-compatibility; the dominant bidding strategy should be to bid truthfully at one’s
valuation. Unless we can demonstrate that an economic outcome such as high efficiency is
the result of agents adopting a dominant strategy, or at the very least an equilibrium strat-
egy profile, we can never be sure that the strategy under which high efficiency is observed
will not, at some point, be discarded in favour of an alternative strategy which yields higher
payoff for its adopters at the expense of overall social welfare. By analogy, consider the pris-
oner’s dilemma game (Flood, 1952; Bendor and Swistak, 1997; Axelrod, 1997); although
the cooperative strategy yields the highest welfare outcome if all agents adopt it, this does
not suffice to demonstrate that both agents will adopt the cooperative strategy since there
will always be a temptation to choose the defection strategy.

Thus there have been numerous attempts to craft agent-based trading strategies for
double-auctions that are able to out-compete other strategies: Preist and van Tol (2003)
devised a variant of Cliff’s ZIP strategy that was able to trade in persistent-shout auctions;
Gjerstad and Dickhaut (2001) (GD) introduced a trading strategy that estimates the probabil-
ity of a bid being accepted as a function of bid price based on an analysis of historical market
data, and then bids to maximise expected profit; this approach was refined in later work by
Tesauro and Bredin (2002) to incorporate a forecasting element; Todd Kaplan’s (Friedman
and Rust, 1991) entry into the Santa Fe tournament was one of the first documented double-
auction sniping strategies, which waits either until the market is in its favour, or the auction
is about to close before submitting a bid; Tesauro and Das (2001) introduced variants of the
GD and ZIP strategies that were able to trade in continuous-time environments; Nicolaisen
et al (2001) used a trading strategy based on a reinforcement-learning model of human game
playing (Erev and Roth, 1998) to analyse a simulated electricity market; and Hsu and Soo
(2001) analysed the performance of a strategy based on the q-learning algorithm (Watkins
and Dayan, 1992). Variations on these and other strategies have been pitted against each
other in several public tournaments designed to elicit new strategy designs from the ACE

community (Greenwald and Stone, 2001; Wellman et al, 2001). Although some of these
strategies have advantages over others in certain situations, and there are pros and cons to
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each, there is evidence to suggest that none of them are dominant over the others (Walsh
et al, 2002), even putting aside the problem of demonstrating that any are dominant over the
entire space of possible strategies.

2.1.3 Evolutionary search

Much of the work cited in the previous section focussed on showing that particular strate-
gies yield high payoff if deployed in a market in which all agents adopt the same strategy
homogeneously. However, if we have reason to believe that none of the strategies from the
previous section are dominant over the others when they interact with each other in the same
marketplace, we have no reason to believe that any single one of them will come to be used
in a real market. Hence if we simply compute market outcomes by running experiments in
which we equip agents homogeneously with the same non-dominant strategy, we are not
necessarily nearer to understanding the economic properties of the double-auction.

Of course, it may be the case that a single dominant strategy simply does not exist for
the double-auction game; instead, some mixture of these, or yet to be discovered strategies,
might constitute a Nash equilibrium. That is, even though no single strategy is “optimal”
in the sense that it is dominant over the others, some mix of these or other strategies might
constitute best-responses to each other. If this were the case and our market were populated
by such a mix of strategies, we might expect that such a state of affairs would persist in
reality, since by definition if the agents were to change their strategy they would be worse
off. Therefore the agents themselves would have an incentive to maintain the status quo; and
thus the components of the system would tend to naturally drive the system back towards
such an equilibrium. Thus if we evaluate the properties of the mechanism when it is in
these equilibrium states, we might expect that our predictions for variables such as market-
efficiency will be accurate for some reasonable duration, and if our design objectives are
maximised in these equilibria we will have shown that our mechanism is homeostatic.

In order to assess whether or not there are mixtures of strategies constituting equilib-
ria, it is necessary to systematically evaluate the strategic interaction between the known
strategies, as well as the space of yet to be considered strategies. Since this search-space
is very large, exhaustive search is unfeasible. This has led researchers to turn to heuristic
methods such as evolutionary search as a possible methods for studying the interaction be-
tween different double-auction strategies by systematically sampling the search space, e.g.:
Cliff (1998) used evolutionary search to explore the parameter space of the ZIP strategy,
and Andrews and Prager (1994) used Koza’s genetic programming technique (Koza, 1993)
to search for a best-response to a uniform mixed-strategy of the Santa Fe tournament en-
tries. Co-evolutionary algorithms (Hillis, 1992; Angeline and Pollack, 1993; Pollack and
Blair, 1998) are highly promising in this respect. In a co-evolutionary search the fitness of
individuals in the population is evaluated relative to one another in joint interactions (sim-
ilarly to payoffs in a strategic game), and it is suggested that in certain circumstances the
converged population is an approximate Nash solution to the underlying game; that is, the
stable states, or equilibria, of the co-evolutionary process are related to the game-theoretic
equilibria. Price (1997) and Dawid (1999) used co-evolutionary search to explore conver-
gence to equilibrium states in the double-auction.

However, there are many caveats to interpreting the equilibrium states of standard co-
evolutionary algorithms as approximations of game-theoretic equilibria, as discussed in de-
tail by Sevan Ficici (Ficici and Pollack, 2000, 1998). This has led to a number of refine-
ments to standard co-evolutionary algorithms by incorporating game-theoretic concepts di-
rectly into the co-evolutionary algorithm itself (Noble and Watson, 2001; Ficici and Pollack,
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2003; Ficici, 2004); the use of heuristic search (evolutionary or otherwise) to find approxi-
mate best-response or equilibrium strategies is a topic that we shall return to in Section 3.3.

2.2 A hybrid approach: empirical game-theory

The various caveats discussed above with the game-theoretic, agent-based and evolutionary
approaches, as used in isolation, have inspired hybrid approaches whereby agent-based ex-
perimentation is used to build an approximate game-theoretic representation which is then
solved using standard techniques from classical and evolutionary game-theory. This method-
ology is known as empirical game-theory, and it is the principle methodology used in our
work (Section 3.2.1). Many studies prior to 2000 had started to take a more principled and
systematic approach to studying the interaction between complex strategies in a simulation
context. For example Rust, Miller and Palmer systematically studied convergence to equi-
librium of the strategies in the original Santa Fe tournament using ideas very similar to evo-
lutionary game-theory (Friedman and Rust, 1991, p. 183–189). These ideas matured within
the MAS community, and Wellman and colleagues set this kind of analysis in a rigorous
game-theoretic terms: Walsh et al (2002) demonstrated the effectiveness of the technique
for several bargaining games, including a double-auction; Walsh et al (2003) introduced
a refinement to the technique to concentrate the sampling of simulations on those experi-
ments that were most critical to the equilibrium analysis ; Reeves et al (2005) performed
a game-theoretic analysis of strategies in a market-based scheduling scenario and Jordan
et al (2007); Wellman et al (2005) used empirical game-theoretic analysis in relation to the
trading agent competition and other games (Jordan et al, 2008).

The basic idea of empirical game theory is to obviate many of the tractability prob-
lems discussed in previous sections by restricting attention to small representative sample
of “heuristic” strategies that are known to be commonly played in a given multi-state game.
For many games, unsurprisingly none of the strategies commonly in use is dominant over
the others. Given the lack of a dominant strategy, it is then natural to ask if there are mixtures
of these “pure” strategies that constitute game-theoretic equilibria.

For small numbers of players and heuristic strategies, we can construct a relatively small
normal-form payoff matrix which is amenable to game-theoretic analysis. This heuristic
payoff matrix is calibrated by running many iterations of the game; variations in payoffs
due to different player-types (eg private valuations) or stochastic environmental factors (e.g.
PRNG seed) are averaged over many samples of type information resulting in a single mean
payoff to each player for each entry in the payoff matrix. Players’ types are assumed to
be drawn independently from the same distribution, and an agent’s choice of strategy is
assumed to be independent of its type, which allows the payoff matrix to be further com-
pressed, since we simply need to specify the number of agents playing each strategy to
determine the expected payoff to each agent. Thus for a game with j strategies, we represent
entries in the heuristic payoff matrix as vectors of the form

p =
`
p1, . . . , pj

´

where pi specifies the number of agents who are playing the ith strategy. Each entry p ∈ P

is mapped onto an outcome vector q ∈ Q of the form

q =
`
q1, . . . qj

´
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where qi specifies the expected payoff to the ith strategy. For a game with n agents, the
number of entries in the payoff matrix is given by

s =
(n + j − 1)!

n!(j − 1)!
(1)

For small n and small j this results in payoff matrices of manageable size; for j = 3 and
n = 6, 8, and 10 we have s = 28, 45, and 66 respectively.

Once the payoff matrix has been computed we can subject it to a rigorous game-theoretic
analysis, search for Nash equilibria solutions, and apply different models of learning and
evolution, such as the replicator dynamics model (Maynard-Smith, 1982), in order to analyse
the dynamics of adjustment to equilibrium.

The equilibria solutions that are thus obtained are not rigorous Nash equilibria for the
full multi-state game; there is always the possibility that an unconsidered strategy could
invade the equilibrium. Nevertheless, heuristic-strategy equilibria are sometimes more plau-
sible as models of real-world game playing than those obtained using, for example, a co-
evolutionary search, precisely because they restrict attention to strategies that are commonly
known and are in common use. We can therefore be confident that no commonly known
strategy for the game at hand will break our equilibrium, and thus the equilibrium stands at
least some chance of persisting in the short term future. In Section 3.2.1 we shall review the
application of empirical game theory to the mechanism design problem.

3 Evolutionary mechanism design

Whilst the application of computational techniques to the agent decision problem has a
comparatively long tradition, their application to the mechanism-design problem is more
recent. The economist Alvin Roth was the first to pose mechanism-design as an engineering
problem (Roth, 2002), thus paving the way for the application of engineering techniques
to mechanism-design. The authors (Phelps et al, 2002b,a) and Cliff (2001) were the first to
apply evolutionary search to the double-auction design problem with a view to automating
the mechanism-design process. Subsequently Byde (2003) used evolutionary computing to
analyze a space of variants to the Vickrey nth-pricing rule in the context of single-sided
auctions.

Meanwhile, more generally the research areas of automated mechanism design (Conitzer
and Sandholm, 2002) and computational mechanism design (Dash et al, 2003) were emerg-
ing. Conitzer and Sandholm (Conitzer and Sandholm, 2002; Sandholm, 2003) were the first
to pose the automated mechanism-design problem in rigorous theoretical terms and to an-
alyze the algorithmic complexity of the problem. This has also led to ideas in adaptive
mechanism design in which the mechanism changes over time in response to a changing
economic environment: David et al (2005) used Bayesian learning to optimize the rules of a
single-sided auction mechanism in cases where agents are constrained to discrete bid prices,
and Pardoe et al (2005) proposed a more general reinforcement-learning approach and used
simulation to validate their framework in a setting in which the seller adapts their reserve
price in order to optimise revenue when faced with an unknown population of loss-averse
bidders.

In this paper we focus on evolutionary and iterative approaches to mechanism design,
such as Conitzer and Sandholm (2007). The central theme of our work is that just as choice
of strategy is not a static problem, since agents may be constrained in their adjustment of
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strategy over time, neither is mechanism-design; mechanism designers may also be con-
strained in their choice of mechanism rules, for example there may be legacy infrastructure
that prevents an institution such as a large stock exchange from radically altering its auc-
tion rules overnight. Just as constraints on strategy adjustment lead to evolutionary game
theory, constraints on mechanism adjustment lead to evolutionary mechanism-design. We
might think of the market institutions that we observe today as the equilibrium outcome of
a co-evolutionary process not just between individual strategies, but a co-evolution between
strategy and mechanism. Young (2001) was among the first to propose this idea with a view
to explaining the evolution of economic institutions and social norms, and in our earlier
work we used a similar idea to design economic institutions (Phelps et al, 2002a). In the
next section we review this earlier work. Although this earlier approach has several short-
comings, the central ideas are instructive in understanding the rationale behind an iterative
approach to mechanism design.

3.1 Co-evolution of auction mechanisms and trading strategies

In our earlier work (Phelps et al, 2002a) we approached mechanism design as an iterative
process by simulating an co-evolutionary arms-race between two populations: on the one
hand, a population of mechanisms whose fitness is determined by social welfare, and on the
other hand a population of trading strategies whose fitness is determined by the utility of
individual agents. The rationale behind this approach is that as strategy population evolved
it would be able to find strategies that manipulate the mechanism in the favour of individual
agents at the expense of social welfare. However, as non-truthful strategies become more
prevalent, we might expect the mechanism population to counter-adapt by finding alterations
to the mechanism rules that are able to restore social welfare. In these early co-evolutionary
experiments, we hoped that over time incentive-compatible mechanism rules would evolve
that were robust against a wide variety of trading strategies, in much the same way that
prey populations adapt robust defenses against predator populations in co-evolutionary arms
races in nature (Dawkins and Krebs, 1979; Valen, 1973).

This approach is similar in philosophy to that of Conitzer and Sandholm (2007):

“We start with a naı̈vely designed mechanism that is not strategy-proof (for ex-
ample, the mechanism that would be optimal in the absence of strategic behavior),
and we attempt to make it more strategy-proof. Specifically, the approach system-
atically identifies situations in which an agent has an incentive to manipulate, and
corrects the mechanism to take away this incentive. This is done iteratively, and
the mechanism may or may not become (completely) strategy-proof eventually.”
(Conitzer and Sandholm, 2007, p. 2)

and reflects the iterative nature of real-world mechanism design:

“Real-world mechanisms are often initially naı̈ve, leading to undesirable strate-
gic behavior; once this is recognized, the mechanism is amended to disincent the
undesirable behavior. For example, some naı̈vely designed mechanisms give bidders
incentives to postpone submitting their bids until just before the event closes (i.e.,
sniping); often this is (partially) fixed by adding an activity rule, which prevents
bidders that do not bid actively early from winning later.” (Conitzer and Sandholm,
2007, p. 2)
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Indeed, the design of real-world market mechanisms usually proceeds incrementally, as ac-
counts of the design of the rules for the US Federal Communications Commission’s auctions
of Personal Communications Services operating licences make clear (Nik-Khah, 2005; Plott,
1997).

In our earlier work we focussed on one specific aspect of the design of a double-auction
market: the transaction pricing rule. The transaction pricing rule sets the price of any given
transaction in the market as a function of the bid and ask offer prices submitted by buyers and
sellers respectively. There are many different rules for setting transaction prices depending
on the scenario at hand. For example, a discriminatory pricing rule sets transaction prices
P ⊂ 2R:

Pi = MBi · k + MSi · (1− k) (2)

where k ∈ [0, 1] is a constant chosen by the market designer, and the multi-sets MB and
MS denote the prices of the matched6 bids and asks in the market respectively. A uniform
pricing rule, on the other hand, sets the same transaction price p ∈ R for all matched offers:

p = eqa · k + eqb · (1− k) (3)

where:

eqa = min(min(MS′), min(MB))

eqb = max(max(MS), max(MB′))

and MB′ and MS′ denote the unmatched bid and ask prices respectively. Note that in case
of a single-sided auction where we have a a single seller with a reservation price, the k = 1

and k = 0 rules correspond to a 1st-price and 2nd-price (Vickrey) auction respectively
(Wurman et al, 1998).

In a private-values auction scenario, offer prices can be thought of as signals7 from the
traders expressing their valuation for the resource being traded. The difficulty the auctioneer
faces in allocating the resource to those who value it most highly (i.e. achieving an optimal
allocation or maximum market efficiency) is that these signals cannot necessarily be relied
upon to be truthful; agents might misreport their valuations in order to make profit at the
expense of others. The traditional approach to this problem is to design incentive-compatible
mechanisms which have the property that the best strategy for every agent is to report their
valuation truthfully.

In the case where only a single unit of commodity is traded per transaction, the pricing
rules above can be shown to be efficient and incentive-compatible for sellers when k = 1,
and similarly for buyers for k = 0. However, there is no value of k in a uniform-price
mechanism for which the mechanism is simultaneously incentive-compatible and efficient

6 Offers are matched when the bid (buy) price meets or exceeds the ask (sell) price
7 The term “signal” in this context derives from the theory of signalling games (Spence, 1973). Although

strictly speaking an auction is not a signalling game, the two are very strongly related; in a signalling game
the agents move first and then the institution responds, whereas in a mechanism design scenario the institution
offers a set of moves to agents who then respond (Dutta, 2001, p. 395). Thus although auctions are not strictly
signalling games, it can still be intuitive to think in terms of signals; by forcing agents to back up their value
claims with hard cash the mechanism designer can encourage honest signalling. Interestingly, signalling
games have also been studied in evolutionary biology in the context of the handicap principle (Zahavi and
Zavahi, 1997; Bullock, 1997). In the scenario under discussion, bids — that is, signals of valuation backed
up with hard cash — can be thought of as “handicaps” which lead to honest signaling.



14

for all traders when multiple units can be traded (Wurman et al, 1998; Williams, 1988); i.e.
there is no mechanism within this space which is strictly optimal in the theoretical sense.
This result suggested to us the possibility of using heuristic search to find mechanisms that
satisficed different design objectives.

In (Phelps et al, 2002a) a co-evolutionary algorithm (Hillis, 1992) was used to simulate
an evolutionary “arms-race” between populations of trading strategies and a separate popula-
tion of transaction pricing rules (the mechanism population). Individuals in each population
were represented as Lisp expressions and evolved using Genetic Programming (Koza, 1993).
The fitness function for the strategy populations was a function of the individual profits of
traders playing those strategies, and the fitness function for the pricing rule population was
a function of the overall market efficiency achieved by an auctioneer using that rule against
the current strategy populations.

Despite some promising preliminary results, it was found that this approach suffered
from a number of drawbacks. The main drawback was that the co-evolving system rapidly
descended into suboptimal auction mechanisms if the mechanism population was not arti-
ficially seeded with individuals with a minimum-level of initial fitness. In cases where the
mechanism population started from extremely low fitness individuals, such as pricing rules
which set the transaction price at 0 regardless of the signals arriving from traders, the strat-
egy populations would try and fit to these artificially low-fitness mechanisms and evolve
to a state where their bids were meaningless. Meanwhile the mechanism population would
be unable to discover more rational rules which worked with the existing “broken” trad-
ing strategies. Therefore the trading strategies could not evolve to work with more rational
mechanisms and so on.

It is often instructive to analyse co-evolutionary processes in game-theoretic terms, since
in a co-evolutionary interaction the fitness assigned to any given individual depends on the
joint actions of the other individuals with which it interacts in a very similar manner to an
evolutionary game8. When we co-evolve auction mechanisms and trading strategies we are
implicitly defining a game9 between two players: the mechanism player on the one hand,
and the trader player on the other. Each player attempts to maximise their payoff (analogous
to maximising fitness); in our present scenario the mechanism player attempts to maximise
market efficiency EA, whereas the trader player attempts to maximise their own utility. Note
that if the selection function of our co-evolutionary algorithm picks individuals from each
population based on a stochastic function of fitness rather than phenotype, then we are im-
plicitly modelling a game of imperfect information Although not every game possesses a
dominant-strategy, we know that all games possess at least one Nash equilibrium in which
the strategy adopted by every player is a best-response to every other player’s strategy. Con-
sider a hypothetical equilibrium for our game at hand in which the mechanism population
chooses a clearing-rule which sets the transaction price of all trades at a constant value
which is independent of the trader’s shout price, and in response the trader player adopts
a strategy of always submitting shouts with zero prices. Depending on the distribution of
trader valuations, a rule which sets transaction prices close to the expected equilibrium price

8 Note that this applies regardless of whether we intuitively think of our original problem as a game. Game
theory is simply a mathematical tool that allows us to study co-dependent optimization problems — that is,
what potential solution should we choose given that our choice will influence the solution of other optimizers
and vice versa. This is precisely the scenario instantiated by a co-evolutionary algorithm; hence game-theory
is an invaluable theoretical tool in understanding the properties of co-evolutionary systems.

9 For conciseness and simplicity, in this section only we shall assume that many trading agents are under
control of the single notional trader player, and that all the agents adopt the same strategy that is specified by
the trader player at any given time.
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would achieve a reasonable expected payoff E(EA) ≈ 1 for the mechanism player. From
an external mechanism designer’s point of view this clearing rule is clearly brittle and un-
desirable, especially if the variance in valuations and hence in efficiency is large. However,
this hypothetical situation would be very hard to leave once we arrive at it, since if the
mechanism player attempts to switch to conventional clearing rules which set transaction
prices as a function of shout prices, it will be faced with the issue that all shout prices are
0. Similarly, the trader player cannot improve their payoff by unilaterally switching to any
other strategy since their payoff is no longer a function of their shout price. This situation is
a game-theoretic equilibrium of the mechanism versus trader game.

If equilibria such as these have large basins of attraction10 under the dynamics of our
co-evolutionary process, then we should not be surprised if our co-evolutionary algorithm
converges on them. Indeed, this is the cause of one of the major problems that was en-
countered in the work reported in (Phelps et al, 2002a) — the co-evolutionary algorithm
sometimes converged on what appeared to be game-theoretic equilibria11, but it is not clear
that the theoretical equilibrium solutions of the mechanism versus trader game are always
desirable from a mechanism design perspective, as illustrated by the above example.

However, the Nash equilibria of the mechanism versus trader game are useful solutions
to a different, but interesting, problem. If we are modelling a process in which multiple
competing market institutions asynchronously adjust their rules over repeated interactions
in response to observed trader strategies in the real world, and vice versa, (analogous to the
scenario analysed by (Roth and Ockenfels, 2002) in which they compare two competing on-
line auction formats: eBay and Amazon), then we might expect equilibrium solutions such as
the fixed-price clearing rule to be the rational end result. It is not inconceivable, for example,
that the reason that we continue to see a prevalence of fixed-price institutions such as bricks-
and-mortar shops for selling consumer goods in real market places, despite the possibility
of dynamically-priced institutions such as eBay12, is due to fact that fixed-price institutions
are an equilibrium solution of the real-life co-evolution between market mechanism and
trader behavior. For example, consumers may be unable to switch from a fixed-price to an
auction market for their required good since one may not exist yet, and correspondingly it
may be very difficult for a startup to create an online auction market in the absence of ex-
isting traders on either side of the market. This is consistent with a view proposed by Philip
Mirowski (Mirowski, 2001, pp.536–545) of economic marketplaces as complex ecologies.
Some markets, such as garage sales, have relatively simple rules and procedures, while oth-
ers, such as financial futures markets, are, by comparison, very complex. Yet all manage to
co-exist, with each type of market, apparently, finding its own niche in which to survive and
prosper. Indeed, the oldest markets have survived for hundreds of years without adopting
the sophisticated rules evident in some newer markets. The behaviours of the participants in
the different markets are, as one would expect, different. One challenge for computational
economics, says Mirowski, is to explain this diversity of mechanisms, how it has arisen and
how it is maintained.

As well as accounting for historical and present observations of actual market behavior,
this analysis could also be normative; we might recommend that retailers adopt a fixed-price
mechanism based on the fact that it is a best-response to the likely status quo. In this case
we might interpret our solution as “the optimal” one in some sense.

10 See page 19.
11 Interestingly the equilibrium state that we ended up with was close to the equilibrium computed in Zhan

and Friedman (2005) where traders are restricted to constant mark-ups.
12 http://www.ebay.com/
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3.2 Mechanism Design as iterative heuristic optimisation

In the previous section we saw that co-evolutionary algorithms are natural models of games
of imperfect information, or simultaneous move games. The previous experiments could be
thought of as an analysis of evolutionary mechanism design in the case that the mechanism
designer and the traders are simultaneously attempting to anticipate the choice of the other.

However, it is sometimes more natural to view real-world mechanism design as a se-
quential iterative process involving a single institution (Conitzer and Sandholm, 2007; Phelps,
2008). In this case, the considerations from the previous section do not apply, since the
mechanism designer is given the opportunity to move first by announcing their mechanism
rules publicly to the trader population, who then respond by placing shouts in the mecha-
nism. In this scenario we no longer have a repeated simultaneous-move game, instead we
have a 2-move extensive-form game. In the first move the mechanism player announces
their mechanism rules with perfect information, and in the second move the trader player
responds by placing shouts. In contrast to the previous section, in this scenario the trader
player does not have to attempt to “anticipate” the move made by the mechanism player;
rather it can form its strategy conditionally based on the mechanism rules chosen by the
mechanism player. Thus, as a mechanism designer we should choose the optimal mecha-
nism rules in the sense that the chosen rules optimise our design objectives when the trader
player plays their best strategy under that particular chosen mechanism.

This scenario is not straight-forwardly modelled by a standard co-evolutionary algo-
rithm; rather it is more natural to view it as a non-co-evolutionary optimisation problem in
which we evaluate each potential mechanism by computing the values of our design objec-
tives when traders play their best strategy for our candidate mechanism. An outline of such
a process is summarised in the pseudocode below.

input : A set of initial heuristic strategies S, and a legacy mechanism µ
repeat1

x ← frequency of each strategy observed in vivo;2
S ← S ∪ { strategies observed in vivo } ;3
Λ ← space of feasible variants of µ;4
µ ← arg maxµ∗∈Λ EvaluateDesignObjectives(µ∗, S,x);5
implement rules defined by µ;6

until forever ;7

We start with an initial set of auction rules comprising a real-life (in-vivo) mechanism µ,
in which we observe a set of trading strategies S. We then update our analysis based on
current observations of the real market (step 3); and finally we choose new mechanism rules
that maximise our design objectives based on in-silico simulations of our proposed new
design (step 5), before iterating the design cycle.

In (Phelps et al, 2003) we described how step 5 could be automated in order to eval-
uate market mechanisms with arbitrary design objectives and domain assumptions. Firstly
we restricted attention to varying the parameter k in the transaction pricing rule given in
equation 3, and evaluated a fitness function which combined two different objectives in a
weighted sum: i) the extent to which the market structure favoured particular groups of
traders (buyers or sellers); and (ii) the efficiency of the market. For each value of k, the
objective function was assessed by running agent-based simulations with randomly-drawn
valuations in order to estimate expected values of these metrics.
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Figure 1 shows our empirical results for a double-auction obtained from simulations
populated with sixty risk-neutral agents homogeneously equipped with a strategy based
on the variant of the Roth-Erev reinforcement learning algorithm (Erev and Roth, 1998)
described in (Nicolaisen et al, 2001). The Roth-Erev strategy (abbreviated hereon as RE)
discretizes the space of possible offer prices, yielding a set of possible actions which can
be thought of as pure strategies in a game of imperfect information. It then chooses ac-
tions stochastically with probabilities weighted in proportion to the cumulative past payoffs
accrued to a particular action, in much the same way that fitness-proportionate selection
operates in a co-evolutionary genetic algorithm. A potential advantage of the Roth-Erev al-
gorithm over co-evolutionary algorithms is that the model has been tested against human
data from controlled laboratory experiments13.

As can be seen from Figure—1, the optimal mechanism under this model is a pricing
rule with k = 0.5. One of the restrictions of this approach is that we are constrained by our
ability to parameterise the auction design space. Although much progress has been made
towards this goal, both in the general case (Wurman et al, 2001) and in the specific case
of the double auction (Niu et al, 2008), it is interesting to consider whether it is possible
to view mechanism design as a less restricted search problem by using approaches which
view mechanism design as an open-ended search for symbolic rules, thus allowing possi-
ble solutions which have not been a-priori categorized. In (Phelps et al, 2003) we extended
the search space to all possible transaction pricing rules expressed as a symbolic linear
function of bid, ask and quote prices. This space was searched heuristically using Genetic
Programming Koza (1993), and our evolved symbolic rule was close to the k = 0.5 solu-
tion suggested by the more restrictive search, thus validating this as a potential approach to
automated mechanism design.

13 Although this claim remains controversial since the model has many free parameters which need to be
calibrated.
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Fig. 1 Fitness F (with one standard deviation) plotted against k for a market with 60 traders.



18

In the case of single-sided auctions for a single unit of commodity, the revenue equiva-
lence theorem (Krishna, 2002) states that if our design objective is restricted to maximising
the revenue of the seller, then any value of k will suffice to achieve our design criterion
provided that all bidders are risk-neutral and valuations are determined homogeneously by
drawing signals from a random distribution that is common to all agents. However these
assumptions are often violated in practice. Byde (2003) used a similar approach to ours in
which he used a co-evolutionary genetic algorithm in place of reinforcement-learning to
model the strategic behavior of agents in single-sided auctions. His goal was to search for
values of k within the space of single-sided mechanisms, with a view to finding revenue-
maximising auctions in scenarios where agent’s risk attitudes and valuations are determined
heterogeneously. By varying parameters governing risk preferences and commonality of val-
uations he was able to demonstrate that values of k intermediate between k = 0 and k = 1

are optimal depending on our assumptions about the specifics of the economic environment
to hand.

3.2.1 Empirical game-theory in mechanism design

There are several drawbacks with the type of approach discussed in the previous section,
since we either: i) assume that the particular strategy (eg Roth-Erev) used in the agent-based
model constitutes a strategic equilibrium which other strategies are unable to invade; or ii)
if we use co-evolutionary search to explore a larger space of strategies, we assume that the
asymtotic states of the co-evolutionary algorithm similarly constitute Nash equilibria. As
discussed in Section 2.1.3, neither of these assumptions are guaranteed to hold.

To deal with this criticism, in later work we used empirical game-theory14 to analyse the
effect of changing from a uniform to a discriminatory pricing rule. Within this context, the
analysis from the previous section can be understood as an empirical game-theoretic analy-
sis restricted to a single heuristic strategy: the Roth-Erev strategy. However, in (Phelps et al,
2006b) we extended our analysis to four classes of strategy: i) the Roth-Erev strategy (RE)
described on p. 17, ii) the truth-telling strategy (TT) which bids at the agent’s valuation,
iii) the Gjerstad-Dickhaut strategy (GD) (Gjerstad and Dickhaut, 2001) and iv) Kaplan’s
sniping strategy (TK) (Friedman and Rust, 1991). As in Walsh et al (2002) we used the
replicator-dynamics differential equation to model how agents switch between these strate-
gies in response to observed payoffs:

ṁj =
ˆ
u(ej ,m)− u(m,m)

˜
mj (4)

where m is a mixed-strategy vector, u(m,m) is the mean payoff when all players play m,
and u(ej ,m) is the average payoff to pure strategy j when all players play m, and ṁj

is the first derivative of mj with respect to time. Strategies that gain above-average payoff
become more likely to be played, and this equation models a simple co-evolutionary process
of mimicry learning, in which agents switch to strategies that appear to be more successful.

For any initial mixed-strategy we can find the eventual outcome from this co-evolutionary
process by solving ṁj = 0 for all j to find the final mixed-strategy of the converged popu-
lation. This model has the attractive properties that: (i) all Nash equilibria of the game are
stationary points under the replicator dynamics; and (ii) all Lyapunov stable states (Lya-
punov, 1966) and interior limit states are also Nash equilibria (Weibull, 1997, pp. 88–89).

Thus the Nash equilibrium solutions are embedded in the stationary points of the di-
rection field of the dynamics specified by equation 4. Although not all stationary points are

14 As pioneered by (Walsh et al, 2002); see Section 2.2 for a full description and literature review.
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Nash equilibria, by overlaying a dynamic model of learning on the equilibria we can see
which solutions are more likely to be discovered by boundedly-rational agents. Those Nash
equilibria that are stationary points at which a larger range of initial states will end up, are
equilibria that are more likely to be reached (assuming an initial distribution that is uniform
and that the replicator dynamics are an accurate description of the switching process).

For a subset n = 3 of our strategies we can geometrically project the space of all possible
mixed-strategy vectors, called the unit-simplex15, onto a two dimensional triangle denoted
42 whose vertices correspond to the pure strategies (1, 0, 0), (0, 1, 0), and (0, 0, 1). This
gives us an intuitive visualisation of the dynamics of the learning process; by plotting the
time-evolution of equation 4 we can identify the switching between our heuristic strategies.
Figure 2 shows the direction field when we consider evolutionary switching between the
three strategies TT, RE and GD, in a k = 0.5 uniform-price clearing house market populated
by twelve agents which are selected at random from a larger population of traders on each
play of the game.

The direction field gives us a map which shows the trajectories of strategies of learning
agents engaged in repeated interactions, from a random starting position. Thus, for Figure 2,
each agent participant has a starting choice of 3 pure strategies (TT, RE and GD) and any
mixed (probabilistic) combination of these three. The arrows indicate the direction of con-
vergence when any such strategy is adopted. The three pure strategies (here, TT, RE and
GD) are represented by the three vertexes of the simplex. A point on an external edge of the
simplex represents a mixed strategy comprising two of the three pure strategies, and a point
strictly inside the simplex represents a mixed strategy comprised of all three pure strategies.
Thus, for example, the point on the left-most edge between the vertexes labeled TT and RE

which is one-third the way from the vertex labeled TT represents a mixed strategy where
strategy TT is chosen 66.7% of the time, strategy RE is chosen 33.3% of the time, and strat-
egy GD not chosen at all; this position on the simplex is denoted (66.7, 33.3, 0). A vector
(a line with an arrow) shows the likely direction of strategic play from any given initial
position. In other words, if the arrows converge on some point in the simplex, this strategy
represented by that point is the end-point of repeated interactions as the game proceeds.

The Nash equilibrium solutions of the heuristic-game are embedded in the stationary
points of the direction field of the dynamics specified by equation 4. In Figure 2 there are two
equilibria: a pure-strategy GD equilibrium at the bottom right of the simplex, and a mixed-
strategy comprising a high probability of TT and a low probability of RE near the bottom
left of the simplex. Although not all stationary points are Nash equilibria, by overlaying a
dynamic model of learning on the equilibria we can see which solutions are more likely
to be discovered by boundedly-rational agents. Those Nash equilibria that are stationary
points at which a larger range of initial states will end up, are equilibria that are more likely
to be reached (assuming that initival values of m are uniformly distributed over 4, and that
the replicator dynamics is an adequate model of the switching process); in the terminology
of dynamic systems they have a larger basin of attraction. The basin of attraction for a
stationary point is proportion of mixed strategies in 4 which have flows terminating at
that point16. The larger the basin, the larger the region of strategy-space which leads to the
attractor, and the more attainable the corresponding equilibrium (Bullock, 1997), and hence
the higher its probability of occurring.

15 4n−1 = {x ∈ Rn :
Pn

i xi = 1}
16 Intuitively, it can be helpful to conceptualise basin size as the volume of the state space which terminates

at the attractor. However, strictly speaking this definition is not accurate. For example, if we have chaotic
dynamics then a strange attractor may capture many flows, but the volume of its basin will be zero.
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TT 

RE 

GD 

Fig. 2 3-dimensional replicator dynamics direction field for a 12-agent clearing-house auction with the three
strategies RE, TT and GD.

This analysis is highly valuable for the purposes of mechanism design, since different
equilibria will yield different outcomes and different values of our design objectives, such as
market efficiency, and we would like to weight these according to their likelihood. In other
words, we would like to compute the size of the basin of attraction of each equilibrium, in
order to arrive at a probability of the equilibria actually occurring, and use this to calculate
the expected value of our design metrics. We can then weight the design objectives for each
mechanism according to the probability distribution over equilibria, which will allow us to
provide more realistic estimates for our design metrics.

In (Phelps et al, 2006b) we used numerical methods to estimate the basin size of equilib-
ria for n = 4 strategies for two different variants of the double-auction: i) a clearing-house
(CH) in which offers from all agents are collected before the market is cleared; and ii) a
continuous double-auction (CDA) in which the market is cleared as new offers arrive. Our
main results are reproduced in Table 1.

These results give us probabilities over outcomes, and hence the ability to assess the de-
sign of each mechanism. The value of EA in each cell of Table 1 shows our estimate of the
expected efficiency17 of the mechanism. This is computed by weighting the pure-strategy
payoffs U according to the probability of the pure strategy being played. For example, in
the case of CDA with 6 agents, we see that there are two possible equilibria. The first equi-
librium, (0, 0, 0.84, 0.16), has a probability of 0.97 of being adopted. In this equilibrium the

17 See Phelps (2008) for a formal definition of market efficiency (EA).
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CH

4 agents 6 agents 12 agents
β(0, 0, 1, 0) = 0.39 β(0, 0, 1, 0) = 0.31
β(0, 0, 0, 1) = 0.61 β(0, 0, 0, 1) = 0.69 β(0, 0, 0, 1) = 1
U = (1.00, 0.90, 1.00, 1.00) U = (1.00, 0.92, 1.00, 1.00) U = (1.00, 0.93, 1.00, 1.00)
EA = 1.00 EA = 1.00 EA = 1.00

CDA

4 agents 6 agents 12 agents
β(0, 0, 0.84, 0.16) = 0.97 β(0, 0, 0.8, 0.2) = 1

β(0, 0, 0, 1) = 1 β(0, 0, 0, 1) = 0.03
U = (0.89, 0.86, 0.98, 0.89) U = (0.85, 0.88, 0.98, 0.86) U = (0.85, 0.89, 0.99, 0.90)
EA = 0.89 EA = 0.96 EA = 0.97

Table 1 Heuristic-strategy equilibria over (TT, RE, GD, TK) for CH versus CDA

strategy GD has a probability 0.84 whereas the strategy TK has a probability of 0.16. By
examining the payoffs to each of these strategies we can compute the expected efficiency of
the mechanism in this equilibrium: 0.84 × 0.98 + 0.16 × 0.86 = 0.96. In the second equi-
librium we see that the strategy TK has a probability 1 of being played, hence the efficiency
of this second equilibrium is 0.86. We then weight our overall efficiency according to the
probability of each equilibrium: 0.96× 0.97 + 0.86× 0.03 = 0.96.

For the most part efficiency outcomes are deterministic — there is either a unique equi-
librium that captures the entire simplex or all equilibria yield the same efficiency. The excep-
tion is the CDA with 6 agents. Here we have a mixed TK and GD equilibrium with efficiency
EA = 0.97 versus a pure TK equilibrium with a significantly lower efficiency of EA = 0.86.
Since the TK equilibrium has a very small basin of attraction β = 0.03 we conclude that the
lower efficiency outcome is not very likely, and hence if we have no prior knowledge of
existing strategy frequencies in the trading population at large we assume a uniform distri-
bution over starting points in the simplex and conclude that our efficiency is still likely to be
very high. However, in the case where we do have prior knowledge about the frequency of
strategies, e.g. we are tasked with evaluating a proposed choice of a continuous-clearing rule
for a six-agent marketplace in which we already observe high proportion of sniping, then
we might conclude that the pure TK equilibrium is much more likely to be reached (since
we will be starting within its attractor), and thus we might recommend that CH clearing is
used instead in order to avoid the probable efficiency hit predicted by our analysis. This
hypothetical design tweak would yield an efficiency gain of 0.97 − 0.86, or 11 percentage
points, at the expense of transaction throughput. Thus by analysing the strategic dynamics of
a proposed mechanism, we can perform evolutionary mechanism design whereby we make
design decisions under legacy constraints (in this hypothetical scenario our legacy constraint
is an existing marketplace populated by snipers). Evolutionary mechanism design is anal-
ogous to evolutionary game theory in that just as players may be constrained to gradually
adjust their strategies, similarly mechanisms cannot always make instantaneous adjustments
in their rules irrespective of what strategies are currently in play.

3.3 Iterative refinement of heuristic-strategy analysis

One of the criticisms of empirical game-theoretic analysis used in the previous section is
that it is highly sensitive to the set of heuristic strategies S, which can never be truly com-
prehensive for an initial design. In recent work (Phelps et al, 2008, 2006a) we attack this
problem by introducing an algorithm called FISH+ for searching for new heuristic strategies
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within an iterative mechanism-design context. Conventional approaches to strategy optimi-
sation use a strategy’s payoff as the basis of an objective function. In contrast, the objective
function in our approach is the strategy’s likelihood of being adopted in equilibrium play, as
estimated from basin size. In (Phelps et al, 2008) we argue that the latter approach is more
suited to heuristic-search of the strategy space in economic scenarios.

The basic idea is to use a sensitivity analysis to identify which of our existing strategies
could obtain a larger basin size, if its expected payoffs could be increased slightly. We then
use heuristic search to find variants of this strategy which yield high “market-share”: that is
their probability of occurring in equilibria, given by the equilibria basin size weighted by the
frequency of adoption specified by the equilibrium mixed-strategy vector. This is formalised
below:

F (i, S, [H]) =
X

x∈ε[H]S

β[H](x, M) · xi (5)

where: i is the index of the candidate heuristic strategy being evaluated from amongst the
set of heuristic strategies S with heuristic payoffs [H], β[H] denotes the basin size of an
equilibrium in the game defined by payoffs [H], and ε[H]S is the set of heuristic equilibria18:

ε[H]S = {x ∈ 4|S| : β[H](x, M) > 2× 10−2}
By applying this search iteratively, we can refine our initial heuristic-strategy analysis of

the marketplace and find mixtures of strategies that yield large basin sizes which are stable
to payoff perturbation:

input : A set of heuristic strategies S = {s1, s2, . . . sn} for some mechanism µ
output: A refined set of heuristic-strategies

[H] ← GetHeuristicPayoffMatrix(S, µ);1
repeat2

F̂ ← maxi=1...n F (i, S, [H]);3
for i ← 1 to n do4

[H]′ ← perturb payoffs in [H] in favour of si;5
if F (i, S, [H]′) > F̂ then6

F̂ ← F (i, S, [H]′);7
i* ← i;8
ÔS ← si;9

end10
end11
if F̂ < F (i*, S, [H]) then return S;12

Π ← create a search space based on generalisations of ÔS;13

OS ← arg maxs*∈Π F (1, s*∪ S, GetHeuristicPayoffMatrix(s*∪ S, µ));14

S ← OS ∪ S;15
[H] ← GetHeuristicPayoffMatrix(S, µ);16
S ← eliminate dominated strategies from S based on [H];17

until forever ;18

Algorithm 1: FiSH+

18 Here we use the heuristic that stationary points with a basin size above 2% are asymptotically stable and
hence equilibria
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To a mechanism designer, this latter state of affairs is particularly attractive, since larger,
more stable basin sizes correspond to more deterministic, and hence predictable behaviour.
In a legacy mechanism design scenario, if we are able to provide an equilibrium analysis
over existing strategies which demonstrates similarly clear-cut equilibria, then we may be
able to convince participants that these are the best-response strategies that their competitors
are likely to adopt, and therefore that they should adopt also. If we then make the algorithms
corresponding to our new heuristic strategies freely available to participants, and if they
believe our equilibrium analysis, then they are likely to play our prescribed strategies, thus
bringing about our predictions, and hence maximising our design objectives. By finding new
strategies with large stable attractors, we make our equilibrium analysis more believable
to participants. This is analogous to incentive-compatibility in a conventional mechanism
design scenario, where it is clear to participants that TT is the traders’ best-response to
the mechanism: in an incentive-compatible mechanism TT is a “freely-available” strategy
with a large attractor. In realistically complex mechanisms such as the double-auction, TT is
dominated. However by applying the FISH+ algorithm we can find analogs of TT for complex
mechanisms.

Of course, in our new equilibria, our existing mechanism rules may no longer maximise
our design objectives. In this paper, we have described real-life mechanism design as an it-
erative process, and that is exactly how evolutionary mechanism design addresses this issue.
Thus our revised pseudo-code for evolutionary mechanism design is as follows:

input : A set of initial heuristic strategies S, and a legacy mechanism µ
repeat1

S ← FiSH+(S, µ);2
publicise S to participants;3
x ← frequency of each strategy observed in vivo;4
S ← S ∪ { strategies observed in vivo } ;5
Λ ← space of feasible variants of µ;6
µ ← arg maxµ∗∈Λ EvaluateDesignObjectives(µ∗, S,x);7
implement rules defined by µ;8

until forever ;9

Algorithm 2: Evolutionary mechanism design

4 Summary

Economists have long used idealized models of agent behaviour in order to understand mar-
ket behaviour. AI practitioners have had to adapt these models in order to build actual agents,
and the resulting engineering approach to agents’ behaviour requires more sophisticated
and complex models. Similarly, it has recently been understood that the idealized notion of
a “free” market is not always applicable, since actual markets entail many rules that gov-
ern their operation. Building real markets entails an engineering approach just as does the
building of real agents.

In this paper we have reviewed iterative methodologies for the engineering of market
mechanisms, which we categorize under the banner of evolutionary mechanism design. This
differs from traditional mechanism design, which is a static analysis based on rigidly defined
design objectives, in which a theoretically pristine mechanism is launched into the world and
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then remains forever in Nash equilibrium stasis. Evolutionary mechanism design, in con-
trast, attempts to take an engineering approach, and approach that is empirical, incremental,
and partly automated. It is not theoretically beautiful, but it is able to take into account real-
life ugliness: arbitrary multiple design objectives, dynamic adjustment to equilibrium, and
constant feedback from an in vivo mechanism.

Just as with engineering methods for other complex real-world domains, such as soft-
ware engineering, our initial analysis cannot be relied upon to be completely accurate and
future-proof (Bittner and Spence, 2006; Beck, 1999). Therefore we continually update our
analysis in response to feedback from the in vivo mechanism: in steps 4 and 5 we compare
our predictions with actuality, and update our set of heuristic strategies S and their observed
frequency in the population x.

Finally, the resulting status quo may not be optimal for our purposes; for example, we
may be able to improve the likelihood of achieving certain design objectives, such as market
efficiency or liquidity (transaction throughput) by making small adjustments in a subset of
the space of mechanism rules, for example by adjusting parameters such as k in the market
clearing rules (equations 2 and 3), as we saw in Section 3.2.

4.1 Future work

In this paper we have concentrated on the purely computational aspects of the method: that
is, in silico analysis. In so doing, we have glossed over some of the challenges presented by
the in vivo analysis of real-life market places, which may be considerable. For example, in
Section 3.2.1, we saw how our design objectives were affected when we considered different
weightings over the frequency with which sniping strategies were observed in the existing
mechanism. In the case of a strategy such as sniping, it is relatively straightforward to de-
termine which traders are adopting this strategy, provided that one has access to sufficient
historical market data, since we can simply look at the timing of agents’ shouts; Roth and
Ockenfels (2002) provide just such an analysis of the eBay marketplace, which validates
that steps 4 and 5 can be performed in vivo in the case of a single class of strategy.

However, inferring the existence of other classes of strategies in a real market presents
a significant challenge, not least because the true valuation of each agent is not directly ob-
servable. Without any prior knowledge of an agent’s valuation, it is very difficult to infer
whether they are using a strategy even as simple as truth-telling. That is not to say, how-
ever, that making inferences about valuations is impossible, especially from the privileged
vantage point of the agent controlling the mechanism, who potentially has full access to
the history of traders’ interactions with the market. We may, for example, be able to infer
bounds on an agent’s valuation by analysing the order statistics of their trade prices over
small time periods; or by analysing their trading behaviour in alternative markets for the
same commodity; or, in the case of an ascending auction format such as eBay, by observing
the price at which runner-up bidders drop out of the auction. With estimates of valuations in
hand, it would possible in many cases to infer an agent’s strategy. The reverse-engineering
of valuations and strategies from market data is a promising area of research, both for those
seeking to make profit, as well as for economists seeking to understand the dynamics of
real-world marketplaces, and there is an emerging literature in this area (Engle-Warnick and
Ruffle, 2001; Engle-Warnick, 2003) to draw upon.

Although it might be impractical in the context of an academic research programme to
apply these in vivo methods in the context of a market such as a stock exchange, it may
be possible to apply them to a markets such as the University of Iowa prediction markets
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(Surowiecki, 2004). Prediction markets are exchanges with unique design considerations
(Wolfers and Zitzewitz, 2004), and an interesting possible research programme would be to
conduct a full in vivo case study of the application of evolutionary mechanism design to a
real-life prediction market through several iterations of the design cycle.
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