
Monoidal Category Theory
Unifying Concepts in Mathematics, Physics, and
Computing

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved.

© June 2024 Noson S. Yanofsky

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved.

Lecture Notes

Chapter 6:

Relationships Between

Monoidal Categories

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved.

Foreshadowing

Chapter 6: Relationships Between Monoidal Categories
Section 6.1: Monoidal Functors and Natural Transformations
Section 6.2: Coherence Theorems
Section 6.3: When Coherence Fails
Section 6.4: Mini-course: Duality Theory

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved.

Foreshadowing

In this chapter we show how monoidal categories are related
to each other.

In context, Chapter 4 taught how categories are related with
functors,

Chapter 5 showed that some of these categories have
monoidal structures.

Now we show that there are functors that describe the
relationships between categories which also respect the
monoidal structures.

These functors highlight how the categories have shared
properties. This is very important for our unification goal.

We also prove important theorems relating monoidal
categories to strict monoidal categories.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved.

Foreshadowing

Chapter 6: Relationships Between Monoidal Categories
Section 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors
Symmetric Monoidal Functors
Monoidal Natural Transformations
Monoidal Equivalence
Examples

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

We have introduced monoidal categories.

Now we will discuss how monoidal categories relate to each
other.

We saw that for a set function f : M −! M′ to be a monoid
homomorphism f : (M, ⋆, e) −! (M′, ⋆′, e′) it must respect
the operations:

f(x ⋆ y) = f(x) ⋆′ f(y) and f(e) = e′.

Here we describe a category theoretic versions of these
conditions.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Definition

Given monoidal categories (A,⊗, α, I, λ, ρ) and (B,⊗′, α′, I′, λ′, ρ′),
a monoidal functor
(F , τ, υ) : (A,⊗, α, I, λ, ρ) −! (B,⊗′, α′, I′, λ′, ρ′) is

A functor F : A −! B.

A natural transformation called a mapping funnel

τ : ⊗′ ◦(F × F) =⇒ F ◦ ⊗.

That is, for all a and a′ in A, there is a morphism

τa,a′ : F(a) ⊗′ F(a′) −! F(a ⊗ a′)

which “funnels” all the elements into the parentheses.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Definition
Let u : 1 −! A and u′ : 1 −! B be the functors that pick out
the units I and I′ of A and B, respectively. Then there is a
natural transformation called a unital funnel

υ : u′ =⇒ F ◦ u.

That is, a morphism in B

υ∗ : I′ −! F(I).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Definition
These natural transformations must satisfy the following coherence
requirements:

The mapping funnel τ must cohere with itself and with the
reassociators α and α′ as in this hexagon coherence
condition

Fa ⊗′ (Fb ⊗′ Fc)
α′Fa,Fb ,Fc

//

idFa⊗
′τb ,c

��

(Fa ⊗′ Fb) ⊗′ Fc

τa,b⊗
′idFc

��

Fa ⊗′ F(b ⊗ c)

τa,b⊗c

��

F(a ⊗ b) ⊗′ Fc

τa⊗b ,c

��

F(a ⊗ (b ⊗ c))
F(αa,b ,c)

// F((a ⊗ b) ⊗ c).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Definition
The mapping funnel τ and the unital funnel υ must cohere with
the right and left unitors ρ and λ:

Fa ⊗′ I′
idFa⊗

′υ∗ //

ρ′Fa
��

Fa ⊗′ FI

τa,I

��

I′ ⊗′ Fa
υ′∗⊗

′idFa
//

λ′Fa
��

FI ⊗′ Fa

τI,a

��

Fa F(a ⊗ I)
Fρa

oo Fa F(I ⊗ a).
Fλa

oo

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Remark

The τ and υ natural transformations can be seen as a weakening
of the commuting square definition of a monoid homomorphism.
Rather than insisting that the diagrams commute, we insist that
there are natural transformations from the composite of one side of
the diagram to the other:

A ×A
F×F //

⊗

��

B ×B

⊗′

��

τ

w�
A F

// B.

1

u

��

u′

��

A F
// B.

υ

�

The τ and the υ are, in general, not isomorphisms.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Remark
In the event that A and B are strict monoidal categories, then the
hexagon coherence condition reduces to

Fa ⊗′ Fb ⊗′ Fc
τa,b⊗

′idFc

))

idFa⊗
′τb ,c

uu

Fa ⊗′ F(b ⊗ c)

τa,b⊗c
((

F(a ⊗ b) ⊗′ Fc

τa⊗b ,c
vv

F(a ⊗ b ⊗ c).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Monoidal functors come in different flavors.

Definition

The above definition of a monoidal functor is also called a
weak monoidal functor or a lax monoidal functor.

If the τ and the υ natural transformations go the other way,
that is, we have τa,a′ : F(a ⊗ a′) −! F(a) ⊗′ F(a′) and
υ∗ : F(I) −! I′ then F is called a oplax monoidal functor.

If the τ and the υ are isomorphisms, then F is called a strong
monoidal functor.

If the τ and the υ are identity morphisms, then we have
F(a) ⊗′ F(a′) = F(a ⊗ a′) and I′ = F(I). Such an F is called
a strict monoidal functor.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Every elementary school child knows the following example.

Example

We met the two strict monoidal categories (R,+, 0) and (R+, ·, 1).
For every real number b > 1, there is a strict monoidal functor

b() : (R,+, 0) −! (R+, ·, 1).

The fact that bx+y = bx · by and b0 = 1 means b() strictly
preserves the operations. There is also a strict monoidal functor

Logb() : (R+, ·, 1) −! (R,+, 0).

The fact that Logb(x · y) = Logb(x) + Logb(y) and Logb(1) = 0
means this functor strictly preserves the operations.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Example

This brings to light a more general statement. If there are monoids
M and M′ that form strict monoidal categories, then a
homomorphism from M to M′ is a strict monoidal functor.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Example

We met the free functor F : Set −! KVect that takes a set S to
F(S), the vector space that has S as its basis. We also met the
right adjoint to this functor, U : KVect −! Set, that takes a vector
space V to U(V), its underlying set. Remember that the category
of sets has two monoidal category structures: (Set,+, ∅) and
(Set,×, {∗}). There are also two monoidal structures on KVect.
The adjunctions respect both monoidal structures as follows

(Set,+, ∅)

(F ,τ,υ)
))

⊥ (KVect,⊕, 0)

(U,τ1,υ1)

ii
(Set,×, {∗})

(F ′,τ′,υ′)
**

⊥ (KVect,⊗,K)

(U′,τ′1,υ
′
1)

jj
.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Example (Continued.)

Let us examine each of these four functors and see how they
respect the monoidal structures:

F(S + S′) is isomorphic to F(S) ⊕ F(S′), and F(∅) = 0. This
is a strong monoidal functor.

There is a map U(V) +U(V ′) −! U(V +V ′). This map is not
an isomorphism because U(V) + U(V ′) has two 0’s and
U(V + V ′) has only one. On the unit, there is U(0) = 0.

F ′(S × S′) � F ′(S) ⊗ F ′(S′) and F ′({∗}) = K. This is a strong
monoidal functor.

There is a map U′(V) × U′(V ′) −! U′(V ⊗ V ′) because
V ⊗V ′ is defined by an equivalence relation on V ×V ′. On the
unit, there is U′(K) = K , {∗}. This means U′ is a lax
monoidal functor.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Example (Continued.)

What about finite sets and finite dimensional vector spaces?

Notice that although there is a free functor from FinSet to
KFDVect, the forgetful functor from finite dimensional vector
spaces does not output finite sets.

In other words, in general, the underlying set of a finite
dimensional vector space is not a finite set.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors
Monoidal functors compose as follows. Given monoidal functor

(F , τ, υ) : (A,⊗, α, I, λ, ρ) −! (B,⊗′, α′, I′, λ′, ρ′)

and

(F ′, τ′, υ′) : (B,⊗′, α′, I′, λ′, ρ′) −! (C,⊗′′, α′′, I′′, λ′′, ρ′′),

we form

(F ′ ◦ F , τ′′, ι′′) : (A,⊗, α, I, λ, ρ) −! (C,⊗′′, α′′, I′′, λ′′, ρ′′).

The component of the mapping funnel τ′′ at elements a and a′ is
defined as the composition of the two maps:

F ′Fa ⊗′′ F ′Fa′

τ′′a,a′

++τ′Fa,Fa′
// F ′(Fa ⊗′ Fa′)

F ′τa,a′
// F ′F(a ⊗ a′).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors
This satisfies the hexegon coherence condition because of the
commutativity of the following diagram:

F ′Fa ⊗′′ (F ′Fb ⊗′′ F ′Fc)
α′′F′Fa,F′Fb ,F′Fc

//

id⊗′′τ′′b ,c

��

id⊗′′τ′Fb ,Fc

$$

(F ′Fa ⊗′′ F ′Fb) ⊗′′ F ′Fc

τ′′a,b⊗
′′id

��

τ′Fa,Fb⊗id

zz

F ′Fa ⊗′′ F ′(Fb ⊗′ Fc)

τ′

��

id⊗Fτb ,c

zz

F ′(Fa ⊗′ Fb) ⊗ F ′Fc

τ′

��

Fτ⊗id

$$

F ′Fa ⊗′′ F ′F(b ⊗ c)

τ′′a,bc

��

τ′Fa,Fbc

$$

F ′(Fa ⊗′ (Fb ⊗′ Fc))
F ′(α)
//

F ′τ

��

F ′(Fa ⊗′ (Fb ⊗′ Fc))

F ′τ

��

F ′F(a ⊗ b) ⊗′′ F ′Fc

τ′′ab ,c

��

τ′

zz

F ′(Fa ⊗′ F(b ⊗ c))

F ′τa,bc

zz

F ′(F(a ⊗ b) ⊗ Fc)

F ′τab ,c

$$

F ′F(a ⊗ (b ⊗ c))
F ′F(αa,b ,c)

// F ′F((a ⊗ b) ⊗ c)).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

The top hexagon commutes because τ′ is a mapping funnel.

The bottom hexagon commutes because τ is a mapping
funnel and because of the functoriality of F ′.

The four triangles commute because of the definition of τ′′.

The left and right quadrilaterals commute because of the
naturality of τ and τ′.

Since all the inner parts of the diagram commute, the outer
hexagon of the diagram commutes. This ensures that the
composed mapping funnel, τ′′, satisfies coherence condition.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

With composition of monoidal functors, one can formulate the
notion of an isomorphism made of monoidal functors.

For example, the two strict monoidal functors here are inverse
to each other and form a monoidal isomorphism.

Another example of isomorphic monoidal categories are the
two strict monoidal categories (N,+, 0) and ({1}∗, •, ∅). There
is clearly a functor n 7! 11 · · · 1(n times). This functor
preserves the tensor product and is an isomorphism.

It should be noted that just as isomorphism of categories are a
rarity, so too, isomorphism of monoidal categories are a rarity.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Symmetric Monoidal Functors

What about functors between symmetric monoidal categories?

Definition
Let A and B be symmetric monoidal categories with braidings γ
and γ′, respectively. A monoidal functor (F , τ, υ) from A to B is a
symmetric monoidal functor if the mapping funnels and the
braidings cohere with each other as follows:

Fa ⊗′ Fa′
γ′Fa,Fa′

//

τa,a′

��

Fa′ ⊗′ Fa

τa′ ,a

��

F(a ⊗ a′)
Fγa,a′

// F(a′ ⊗ a).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Symmetric Monoidal Functors

A Category Defined

The collection of monoidal categories and strong monoidal
functors form the category MonCat.

There is a subcategory of strict monoidal categories and
strong monoidal functors denoted StrMonCat.

The collection of symmetric monoidal categories and
symmetric monoidal functors form a category SymMonCat.

There is a subcategory of strictly associative symmetric
monoidal categories and symmetric monoidal functors
between them denoted StrSymMonCat.

There are forgetful functors from the collections of symmetric
monoidal categories to the collections of monoidal categories.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Symmetric Monoidal Functors

A Category Defined (Continued.)

These categories are related as follows:

SymMonCat
U // //MonCat

StrSymMonCat
U

// //
?�

OO

StrMonCat.
?�

OO

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Natural Transformations

Let us go up one level and define a natural transformation between
monoidal functors.

Definition

Let A and B be symmetric monoidal categories and let (F , τ, υ)
and (F ′, τ′, υ′) be monoidal functors from A to B. A monoidal
natural transformation from (F , τ, υ) to (F ′, τ′, υ′) is a natural
transformation µ : F =⇒ F ′, i.e., for every a in A, a morphism
µa : F(a) −! F ′(a) which coheres with the mapping funnel and
unital functors as follows:

F(a) ⊗′ F(a′)
µa⊗

′µa′ //

τa,a′

��

F ′(a) ⊗′ F ′(a′)

τ′a,a′
��

I′

υ

~~

υ′

!!

F(a ⊗ a′) µa⊗a′
// F ′(a ⊗ a′) F(I) µI

// F ′(I).

A symmetric monoidal natural transformation is a monoidal
transformation between symmetric monoidal functors.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Natural Transformations

A Category Defined

The collection of monoidal categories, strong monoidal
functors, and monoidal natural transformations forms a
2-category MonCat.

There is a sub-2-category of strict monoidal categories, strong
monoidal functors, and monoidal tranformations denoted
StrMonCat.

There are similar statements about the 2-categories of
symmetric monoidal categories SymMonCat and strictly
associative symmetric monoidal categories
StrSymMonCat.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Symmetric Monoidal Functors

A Category Defined (Continued.)

These 2-categories fit together as follows:

SymMonCat
U // //

MonCat

StrSymMonCat U
// //

?�

OO

StrMonCat.
?�

OO

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Natural Transformations

Given the notion of a symmetric monoidal natural transformation,
we can easily describe what it means for two symmetric monoidal
categories to be equivalent.

Definition

A monoidal equivalence between (A,⊗, α, I, λ, ρ) and (A′,⊗′,
α′, I′, λ′, ρ′) means that there is a monoidal functor (F , τ, υ) from A

to A′ and a monoidal functor (F ′, τ′, υ′) from A′ to A with
monoidal natural isomorphisms µ : IdA −! F ′ ◦ F and
µ′ : F ◦ F ′ −! IdA′ . An equivalence that uses strong monoidal
functors has the property that the functor is full, faithful, and
essentially surjective.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

We saw shows how two objects funnel into one.

We also saw how three objects funnel into one.

What about more objects?

In the next slide, there is a diagram of four objects funneling
into one.

The slide after that has some needed orientation.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

Fa((FbFc)Fd) α //

��

(Fa(FbFc))Fd
α⊗Id

''

��

Fa(Fb(FcFd))

Id⊗α
77

α

++

��

((FaFb)Fc)Fd

��

(FaFb)(FcFd)

α
33

τ⊗Id⊗Id

��

Id⊗Id⊗τ

��

Fa(F(bc)Fd) //

��

(FaF(bc))Fd

��

Fa(FbF(cd))

��

α

''

(F(ab)Fc)Fd

��

(FaFb)F(cd)

τ⊗Id

��

F(ab)(FcFd)

α
77

Id⊗τ

��

FaF((bc)d)

τ
��

F(a(bc))Fd

τ
�� ''

FaF(b(cd))

τ
��

77

F(a((bc)d))
F(α)

// F((a(bc))d)
F(α⊗Id)

''

F(a(bc))Fd

τ
��

F(a(b(cd)))

F(α) ++

F(Id⊗α)
77

F(ab)F(cd)

τ
��

F(((ab)c)d)

F((ab)(cd))
F(α)

33

The mapping funnel with four objects.Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors
Some orientation around this diagram is needed. All vertical maps
are instances of τ’s.

The top is Mac Lane’s pentagon condition.
The bottom is the image of Mac Lane’s pentagon condition
under F .
The center diamond commutes because of the naturality of τ.
The top quadrilaterals of both the front left and the front right
commute out of the naturality of α.
The bottom hexagons of both the front left and the front right
commute because of the hexagon coherence condition.
The back top left and top right are the hexagon coherence
condition tensored with the identity on each side.
The bottom of the back left and the back right commute by the
naturality of τ.
The top of the back commutes by naturality of α and the
bottom of the back commutes because it is an instance of the
hexagon coherence condition.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Monoidal Functors

The main point is that this diagram consists of naturality
squares, pentagons, and hexagons.

If one assumes the pentagons and the hexagons commute,
then between any two objects in the diagram, there is at most
one morphism between them.

It can be shown that for any n, the mapping funnel that
combines all the n elements into one pair of parentheses is
also made of pentagons, hexagons, and naturality squares.

This is similar to our other coherence conditions where we
assume some set of smaller diagrams commute and show
that all the larger ones commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Examples

The rest of this section consists of examples of monoidal functors.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Examples from Linear Algebra

In this diagram, we summarized all the functors that we have
been dealing with relating sets, vector spaces, matrices,
unitary operators, unitary matrices, and Hilbert spaces.

We described monoidal structures on these categories in the
mini-course on Advanced Linear Algebra.

The next two slides extend that diagram to include the
monoidal structures and the monoidal functors.

All the categories are strictly associative symmetric monoidal
categories and all the functors are symmetric monoidal
functors (not neccessarily strict.)

The next slide has the tensor products and Cartesian
products monoidal structures.

The slide after has the coproducts and direct sums structures.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Examples from Linear Algebra

(Set,×, {∗})

F
**

⊥ (CVect,⊗,C)

U

jj
(Hilb,⊗,C)Uoooo (UHilb,⊗,C)_?

oo

(FinSet,×, {∗})
F //

?�

OO

(CFDVect,⊗,C)
?�

OO

(FDHilb,⊗,C)Uoooo
?�

OO

(UFDHilb,⊗,C)_?
oo

?�

OO

(CMat,⊗, 1)
?�

≃

OO

(UMat,⊗, 1)_?
oo

?�

≃

OO

Monoidal categories with tensors and functors from linear algebra.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Examples from Linear Algebra

(Set,+, ∅)

F
**

⊥ (CVect,⊕, 0)

U

jj
(Hilb,⊕, 0)Uoooo (UHilb,⊕, 0)_?

oo

(FinSet,+, ∅)
F //

?�

OO

(CFDVect,⊕, 0)
?�

OO

(FDHilb,⊕, 0)Uoooo
?�

OO

(UFDHilb,⊕, 0)
?�

OO

_?
oo

(CMat,⊕, 0)
?�

≃

OO

(UMat,⊕, 0)_?
oo

?�

≃

OO

Monoidal categories with direct sums and functors from linear
algebra.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Examples with Circuits, Functions, and Matrices

The following three examples of monoidal functors are connected
as follows

C

C ′

1

xx

�

**

FuncDesc(C)

⊕

FuncDesc(C ′)

� //

MatrixDesc(C) 0

0 MatrixDesc(C ′)

Monoidal functors with circuits, functions, and matrices.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Examples with Circuits, Functions, and Matrices

Example

Here we introduced the functor
FuncDesc : Circuit −! BoolFunc.

We discussed the monoidal structure of Circuit here.

We discussed and the monoidal structure of BoolFunc here.

The functor is a strict monoidal functor:

FuncDesc(C ⊕ C ′) = FuncDesc(C) ⊕ FuncDesc(C ′).

The ⊕ on the left is disjoint parallel processing of the two
circuits, while the ⊕ on the right means the disjoint union of
two functions.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Examples with Circuits, Functions, and Matrices

Example

The functor MatrixDesc : Circuit −! BoolMat was
introduced here.

We discussed the monoidal structure of Circuit here.

We discussed the monoidal structure of BoolMat here.

The functor is a strict monoidal functor because

MatrixDesc(C ⊕ C ′) = MatrixDesc(C) ⊕MatrixDesc(C ′).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Examples with Circuits, Functions, and Matrices

Example

The functor FuncEval : BoolFunc −! BoolMat was
introduced here.

The category BoolMat has a monoidal structure which is just
addition on objects. On morphisms (Boolean matrices), this is
disjoint union as described here.

The functor FuncEval respects the monoidal structure.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

An Example with Logical Formulas

Logical circuits are intimately related to logical formulas.

We describe a category Logic, whose morphisms are
sequences of logical formulas.

We will then describe a functor

L : Circuit −! Logic

which will take every circuit to the sequence of logical
formulas that is associated with it.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

An Example with Logical Formulas

•
•

•

•
•

•

•A
B

C

D
E

F

•

A∧B

¬(C∧E)

D∧E

¬F

(A∧B)∨(¬(C∧E))

•

(D∧E)∧(¬F)

((A∧B)∨(¬(C∧E)))∧(D∧E)

A∨((D∧E)∧(¬F))

The above logical circuit corresponds to the sequence of logical
formulas:

((A ∧ B) ∨ (¬(C ∧ E))) ∧ (D ∧ E), A ∨ ((D ∧ E) ∧ (¬F)).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

An Example with Logical Formulas

A Category Defined

The collection of logical formulas form a category Logic.

The objects of Logic are the natural numbers.

The morphisms from m to n are equivalence classes of
n-tuples of logical formulas where each formula uses at most
m variables.

Two n-tuples are considered equivalent if they are the same
formulas except for an exchange of variable names.

For example, the sequence described in the last slide
represent an element of HomLogic(6, 2) because there are 6
variables and 2 formulas.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

An Example with Logical Formulas

A Category Defined (Continued.)

A general morphism will be written as Φ: m −! n which
corresponds to logical formulas (ϕ1, ϕ2, . . . , ϕn) where each ϕi

has at most m variables.

A map Φ: 0 −! m corresponds to an m-tuple of true and
false values. A map Φ: m −! 0 corresponds to the empty
sequence of formulas.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

An Example with Logical Formulas

A Category Defined (Continued.)

Composition in Logic can be understood by looking at an
example of composition of circuits as shown in the next slide.

There are seven circuits on the left which will correspond to a
morphism in Logic written as Φ: m −! 7 or
Φ = (ϕ1, ϕ2, . . . , ϕ7).

These compose into two circuits on the right.

The four top wires enter the circuit that corresponds ψ1.

The four variables in ψ1 will be changed to the formulas ϕ1,
ϕ2, ϕ3 and ϕ4 that correspond to the four circuits on the left.

Similarly with the three wires entering the bottom circuit.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

An Example with Logical Formulas

ψ1

ψ2

ϕ7

ϕ6

ϕ5

ϕ4

ϕ3

ϕ2

ϕ1

Composition of logical circuits.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

An Example with Logical Formulas

A Category Defined (Continued.)

Let us be formal about composition.

Let Φ: m −! n correspond to the logical formulas
(ϕ1, ϕ2, . . . , ϕn) and Ψ: n −! p correspond to the logical
formulas (ψ1, ψ2, . . . ψp).

The composition Ψ ◦ Φ: m −! p corresponds to the logical
formulas (ξ1, ξ2, . . . , ξp) where each ξi uses at most m
variables.

The ξi is defined by substituting the jth variable with ϕj .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

An Example with Logical Formulas

A Category Defined (Continued.)

The identity map idn : n −! n in Logic is the sequence of n
logical formulas (x1, x2, . . . , xn). The fact that composition with
such identity maps does not change the equivalence classes of
logical formulas can be seen by looking at the next slide.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

An Example with Logical Formulas

(ψ1, ψ2, ψ3)

x1

x2

x3

x4

x5

x6

x7

x1

x2

x3

Composition with identities of logical circuits
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

An Example with Logical Formulas

A Category Defined (Continued.)

This category of logical formulas has a symmetric monoidal
structure which corresponds to the disjoint union of logical
circuits, (Logic,⊕, 0).

The monoidal structure on the objects is simply addition, i.e.,
m ⊕ n = m + n.

Given Φ: m −! n which correspond to the logical formulas
(ϕ1, ϕ2, . . . , ϕn)

and Ψ: m′ −! n′ which corresponds to the logical formulas
(ψ1, ψ2, . . . , ψn′),

then Φ ⊕Ψ: m + m′ −! n + n′ corresponds to the logical
formulas (ϕ1, ϕ2, . . . , ϕn, ψ1, ψ2, . . . , ψn′) where each of the ϕ’s
and ψ’s use at most m + m′ variables.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

An Example with Logical Formulas

A Category Defined (Continued.)

Since the category and monoidal structure of Logic was
made to be similar to Circuit, it is not surprising that there is
a strict monoidal functor L : Circuit −! Logic that takes
every logical circuit to the logical formulas it describes.

In detail, on objects, L(m) = m.

L takes a circuit with m inputs and n outputs to n logical
formulas each using up to m variables.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

An Example with Logical Formulas

A Category Defined (Continued.)

The generators of the category are the logical gates AND,
OR, NOT, NAND, etc.

The functor takes these gates to the logical formulas A ∧ B,
A ∨ B, ¬A, and ¬(A ∧ B), etc.

The functor L respects the composition in the categories
because the composition in Logic was made to mimic the
composition in Circuit.

Similarly, L is a strict monoidal functor. Interestingly, L is not a
symmetric monoidal functor because Circuit is not a
symmetric monoidal category.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.1: Monoidal Functors and Natural Transformations

Foreshadowing

Chapter 6: Relationships Between Monoidal Categories
Section 6.2: Coherence Theorems

Strictification Theorem for Monoidal Categories
Coherence Theorem for Monoidal Categories
Coherence Theorem for Symmetric Monoidal Categories

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Introduction

In this Section we state theorems about monoidal categories and
we state theorems about the relationship of monoidal categories
and strict monoidal categories. For the most part, we leave the
technical details of the proof for the text and here we just give an
overview.

We start by proving a coherence theorem that says that Assoc
is the paradigm of a monoidal category in the sense that it is
the free monoidal category on one generator. This will lead to
profound statements about every monoidal category.

Then we will state and prove a strictification theorem which
says that every monoidal category is monoidally equivalent to
a strict monoidal category. Since this is a fundamental
theorem about monoidal categories, we prove it in two
different ways.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Strictification Theorem

In both proofs we associate a strict monoidal category to a
monoidal category. We will then show that the original
monoidal category is monoidally equivalent to the strict one.
The tensor products of the strict monoidal categories are (i)
string concatenation, and (ii) function composition. These are
two paradigms of strictly associative operations.

Then the strictification theorem is used to prove the
coherence theorem.

We conclude with similar theorems about symmetric monoidal
categories.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

The Coherence Theorem for Monoidal Categories

The following theorem is the first coherence theorem and future
coherence theorems will follow the same form as this one. Before
we tackle it, we will go back to the free monoid adjunction. The
ideas in that example will be needed. In particular, think about the
free monoid on a one-object set.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Reminder

The following adjunction is a paradigm for many examples of
free-forgetful adjunctions.

Example

There is a forgetful functor U : Monoid −! Set that takes
every monoid to its underlying set.

There is the free monoid functor F : Set −!Monoid that
takes every set S to S∗.

We saw that F is left adjoint to U. This means that for all sets
S and for all monoids M, there is the following natural
isomorphism:

HomMonoid(F(S),M) � HomSet(S,U(M)).

Let us to examine the free monoid on one object, say ∗.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Reminder

Example (Continued.)

The monoid will consist of ∗, ∗∗, ∗ ∗ ∗, There will also be
the empty set as the unit. This monoid is isomorphic to the
monoid of natural numbers (N,+, 0).

The universal property says that for every set function
f : {∗} −! U(M) — which is a function that picks out an
element m of M — there is a monoid homomorphism
f ′ : N −! M.

the output of the function f ′ is m, mm, mmm,

Let us restate this in a way that will be useful. The free monoid
on one object will have the property that for every monoid M
and every element m in M, there is a unique morphism from
the free monoid on one object to M that takes ∗ to m.

.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Reminder

Example (Continued.)

Let us summarize the properties of F({∗}) in three different
ways.

The monoid F({∗}) is the free monoid on one generator.
For every object m in M, there is a unique morphism
f : F(∗) −! M such that f(∗) = m.
We have

HomMonoid(F({∗}),M) � HomSet({∗},U(M)) � U(M).

This means that there is an isomorphism
HomMonoid(F({∗}),M) � U(M) where U(M) is the set of
elements of M.

Now back to the main theorem.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

The Coherence Theorem for Monoidal Categories

Theorem

The Coherence Theorem for Monoidal Categories. We state it
in four equivalent ways.

For every monoidal category (C,⊗, I, α, ρ, λ) and every object
x in C, there is a unique strict monoidal functor
Fx : Assoc −! C such that F(•) = x.

There is an isomorphism of categories

Hom(Assoc,C) � HomCat(1,C)

where the Hom set on the left is strict monoidal functors.

The monoidal category Assoc is the free monoidal category
on one generator.

Two morphisms in C in the image of Fx generated by
identities, α, ρ, λ and their inverses, and built up by ◦ and ⊗,
are equal.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Strictification Theorem

Proof.
Remember the association category, Assoc. The objects are
bracketed words and between any two objects there is exactly one
morphism. Let (C,⊗, I, α, λ, ρ) be a monoidal category. For any
object x in C we will show that there is a strict monoidal functor
Fx : Assoc −! C. For the association of one letter •, the functor
Fx(•) = x. It is obvious how to define Fx on objects of Assoc. For
an association ••, the functor will go to x ⊗ x = xx. The
association •(••) will go to x(xx). Within Assoc there is a unique
maps •(••) −! (••)• that Fx takes to α in C. There are also
maps λ and ρ in Assoc which Fx takes to λ and ρ in C. □

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Strictification Theorem

Continued.
In the proof, we have to examine how to complete maps of the form

v = s ⊗ t

zz $$
w x.

There are nine such completeing maps as can be seen in the next
slide. Each of them comutes out of naturality, or bifunctoriality, or is
a pentagon. This is central for the proof. □

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Strictification Theorem
β , γ β = β′ ⊗ id β = id ⊗ β′ β = αs,t ,u

γ =
γ′ ⊗ id

(i) v = st
β′idt

{{

γ′idt

""

wt

##

xt

{{

zt

(ii) v = st
idsβ

′

{{

γ′idt

""

sw

γ′idw $$

xt

idxβ
′

{{
xw

(iii) v = s(tu)
αs,t ,u

yy

γ′(idt idu)

%%

(st)u

(γ′idt)idu %%

x(tu)

αx,t ,u
yy

(xt)u

By induction on v. By bifunctoriality of ⊗. By naturality of α.

γ =
id ⊗ γ′

(iv) v = st
β′idt

{{

idsγ
′

##

wt

idxγ
′

$$

sx

β′idx{{
wx

(v) v = st
idsβ

′

{{

idsγ
′

##
sw

$$

sx

zz
sz

(vi) v = s(tu)
αs,t ,u

yy

ids(γ
′′γ3)

%%

(st)u

(idsγ
′′)γ3

%%

s(wu′)

αs,w,u′
yy

(sw)u′

By bifunctoriality of ⊗. By induction on v. By naturality of α.

γ =
αs,t ,u

(vii) v = s(tu)
β′(idt idu)

yy

αs,t ,u

%%

w(tu)

αw,t ,u
%%

(st)u

(β′idt)iduyy

(wt)u

(viii) v = s(tu)
ids(β

′′β3)

yy

αs,t ,u

%%

s(wu′)

αs,w,u′
%%

(st)u

(idsβ
′′)β3

yy

(sw)u′

(ix) v = s(t(uy))

αs,t ,uy

��

idsαt ,u,y

''

s((tu)y)

αs,tu,y

��

(st)(uy)

αst ,u,y

��

(s(tu))y

αs,t ,u idyww

((st)u)y

By naturality of α. By naturality of α. By pentagon coherence condition of α.

Nine cases of completing two maps coming out of a tensor product.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Strictification Theorem

Let us deal with the other three ways to state the coherence
theorem.

The natural isomorphism follows from the fact that x in C is
chosen by a F ′ : 1 −! C. This functor determines and is
determined by the unique functor Fx : Assoc −! C.

By “free monoidal category” we mean that there is a forgetful
functor U : MonCat −! Cat. This functor has a left adjoint
Free : Cat −!MonCat which takes a category to its free
monoidal category.The equation says that Free(1) = Assoc.

Since in Assoc there is only one morphism between each
bracketing in Assoc, the functors Fx only go to one
morphism. Notice in an arbitrary monoidal category there
need not be any morphism between bracketing of words
where the underlying order is not the same. This means that
there might not be a morphism of the form a ⊗ b −! b ⊗ a.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Strictification Theorem

Theorem (Strictification Theorem)

Strictification Theorem for Monoidal Categories. Every
monoidal category is monoidally equivalent to a strict monoidal
category.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Strictification Theorem

Proof.

Using string concatenation. Let (C,⊗, α, I, λ, ρ) be a monoidal
category. As we saw, the category of strings on an alphabet with
the concatenation operation is a strict monoidal category. We form
such a strict monoidal category (C•, •, ∅) that will be monoidally
equivalent to (C,⊗, α, I, λ, ρ). □

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Strictification Theorem

Proof.
Using function composition. As we saw, the collection of
endomorphisms of a category with composition is a strict monoidal
category. Let (C,⊗, α, I, λ, ρ) be a monoidal category. We form
such a strict monoidal category (C◦, ◦, IdC). The monoidal
category C will be monoidally equivalent to a subcategory of this
strict monoidal category. □

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Strictification Theorem

This theorem shows that the inclusion 2-functor

StrMonCat ↪−!MonCat

is not only full and faithful, but it is almost essentially surjective in
the sense that every monoidal category is monoidally equivalent
(not necessarily isomorphic) to a strict monoidal category.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Strictification Theorem

How does this theorem help us? When we use our favorite
category like Set, Group, Graph, or Top, we know that the
Cartesian product is not strict. This theorem tells us that although it
is not strict, it is strongly monoidally equivalent to another category
that does have a strict monoidal product. Since this equivalence is
monoidal, most of the properties of the strict monoidal category
are the same as the original category. So, what is true about the
strict monoidal category is true about the equivalent original
monoidal category. Therefore when dealing with a monoidal
category, you might as well imagine it is a strict monoidal category.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

The Coherence Theorem for Monoidal Categories

Now we use the strictification theorem to prove the coherence
theorem.

Theorem

Let C be a monoidal category and Cx be a strict monoidal
category that is equivalent to C with a monoidal functor
L : C −! Cx . (Cx can be C• or C◦ given in the two proofs of the
strictification theorem.) Let u and v be two ways of bracketing any
objects in C, i.e., they are two functors Cn −! C that only use the
tensor product, identities, and composition. If ϕ and ψ are two
natural transformations from u to v which are generated by
identities, α, ρ, λ and their inverses, and are built up using ◦ and ⊗,
then ϕ = ψ.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

The Coherence Theorem for Symmetric Monoidal
Categories

Now that we have dealt with coherence for monoidal categories,
we can move on to coherence theory for symmetric monoidal
categories. Here we work with the category Sym rather than the
category Assoc.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

The Coherence Theorem for Symmetric Monoidal
Categories

Theorem

The Coherence Theorem for Symmetric Monoidal Categories.
We state it in four equivalent ways.

For every symmetric monoidal category (C,⊗, I, α, ρ, λ, γ) and
every object x in C, there is a unique strict symmetric
monoidal functor Fx : Sym −! C such that Fx(1) = x.

There is an isomorphism of categories

Hom(Sym,C) � HomCat(1,C)

where the Hom set on the left is strict symmetric monoidal
functor.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

The Coherence Theorem for Symmetric Monoidal
Categories

Theorem

The Coherence Theorem for Symmetric Monoidal Categories

The symmetric monoidal category Sym is the free symmetric
monoidal category on one generator.

Two morphisms in C generated by images of Fx of identities,
α, ρ, λ, γ and their inverses, built up by ◦ and ⊗ are equal if the
two underlying permutations are the same.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Strictification Theorem for Symmetric Monoidal
Categories

The strictification theorem for monoidal categories extends to
symmetric monoidal categories.

Theorem (Strictification Theorem)

Strictification Theorem for Symmetric Monoidal Categories.
Every symmetric monoidal category is monoidally equivalent to a
strictly associative symmetric monoidal category. This equivalence
is via symmetric monoidal functors and symmetric monoidal
natural transformations. This is done by making the underlying
monoidal category strict and then transport the symmetric
structure to the strict monoidal structure. .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Strictification Theorem for Symmetric Monoidal
Categories

This theorem shows that the inclusion 2-functor

StrSymMonCat ↪−! SymMonCat

is not only full and faithful, but it is almost essentially surjective in
the sense that every symmetric monoidal category is monoidally
equivalent (not necessarily isomorphic) via symmetric monoidal
functors and symmetric monoidal natural transformations to a
strictly associative symmetric monoidal category.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.2: Coherence Theorems

Foreshadowing

Chapter 6: Relationships Between Monoidal Categories
Section 6.3: When Coherence Fails

The Flexibility of Coherence
Examples

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

The Flexibility of Coherence

While the coherence theorem is one of the central ideas in the
world of monoidal categories, it is only the beginning of the story.
We will see that there are many other structures, and for each
structure there are many different coherence conditions.
Let us examine the pentagon coherence condition. Consider the
category of vector spaces and let V , W , and X be three vector
spaces. Using the tensor product, we form the vector spaces
V ⊗ (W ⊗ X) and (V ⊗W) ⊗ X . There is a linear isomorphism
α : V ⊗ (W ⊗ X) −! (V ⊗W) ⊗ X defined by

⟨v , ⟨w, x⟩⟩ 7−! ⟨⟨v ,w⟩, x⟩

which satisfies the pentagon coherence condition.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

The Flexibility of Coherence

Formally, the fact that the pentagon commutes means that

(αV ,W ,X ⊗ idY) ◦ (αV ,WX ,Y) ◦ (idV ⊗ αW ,X ,Y) = (αVW ,X ,Y) ◦ (αV ,W ,XY).

Since the α’s are isomorphisms and we can work with the inverses
of the morphisms, we can rewrite this as

(αVW ,X ,Y)
−1◦(αV ,W ,XY)

−1◦(αV ,W ,X ⊗ idY)◦(αV ,WX ,Y)◦(idV ⊗αW ,X ,Y)

= idV(W(XY)).

That is, rather than saying that the composite of the three maps in
the pentagon coherence condition is the same map as the
composite of the two other maps, we can say that going around the
pentagon completely brings one right back to the element where
one started.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

The Flexibility of Coherence
Now let us look at an example where the pentagon coherence
condition fails. Consider the linear isomorphism
α′ : V ⊗ (W ⊗ X) −! (V ⊗W) ⊗ X defined by

⟨v , ⟨w, x⟩⟩ 7−! (−1)⟨⟨v ,w⟩, x⟩.

While this is a legitimate isomorphism, the pentagon coherence
condition is emphatically not satisfied. Using the three composable
maps means taking the elements to the composition of three −1’s
meaning that

⟨v , ⟨w, ⟨x, y⟩⟩ 7−! (−1)⟨⟨⟨v ,w⟩, x⟩, y⟩.

In contrast, using the other two maps has two (an even number)
(−1)s which gives the map

⟨v , ⟨w, ⟨x, y⟩⟩ 7−! ⟨⟨⟨v ,w⟩, x⟩, y⟩.

These are different maps.
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

The Flexibility of Coherence

Another way of saying this is that going all the way around the
pentagon condition gives us

(α′VW ,X ,Y)
−1◦(α′V ,W ,XY)

−1◦(α′V ,W ,X × idY)◦(α
′
V ,WX ,Y)◦(idV ×α

′
W ,X ,Y)

= (−1)IdV(W(XY)).

This is not the identity. Rather than saying that α′ is coherent, we
say that it has an “obstruction to coherence.” Notice that going
around the pentagon with α′ does not give the identity, but going
around the pentagon with α′ twice is a composition of ten (an even
number) linear maps (−110 = 1) and hence does give the identity.
This example can be generalized: for every n, there are
reassociators that commute when going around the pentagon n
times and not less.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

The Flexibility of Coherence
In my thesis, different types of pentagon coherence conditions
were studied. There was a general reassociators that have no
requirement of making the pentagon commute at all.
That is, they will not commute going around the pentagon any
amount of times.
This reassociator is simply an isomorphism and has no
commuting axiom. This is like an associahedron with open
pentagons instead of filled-in pentagons. These shapes are
interesting.
Such an associahedron for four letters will be equivalent to a
circle and not a (commutative) disk.
Such an associahedron for five letters is equivalent to a
sphere with six pentagons removed and only four naturality
squares in place. This is different than the coherent version
where we saw that there is a unique morphism between any
two vertices as a filled in sphere.
One can learn about how un-coherent a reassociator is by
looking at these shapes.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

The Flexibility of Coherence

While working on these issues, I came upon an interesting
shape.

Consider the associahedron on seven letters, A7.

There are 132 ways of bracketing 7 letters and hence this
shape has 132 vertices. The figure on the next slide shows
shows a part of A7 which looks like 36 objects.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

The Flexibility of Coherence

(a(b(cd)))[e[fg]] //

��

(a((bc)d))[e[fg]] //

��

((a(bc))d)[e[fg]] //

��

(((ab)c)d)[e[fg]]

��

((ab)(cd))[e[fg]]oo

��

(a(b(cd)))[e[fg]]oo

��

(a(b(cd)))[[ef]g] //

��

(a((bc)d))[[ef]g] //

��

((a(bc))d)[[ef]g] //

��

(((ab)c)d)[[ef]g]

��

((ab)(cd))[[ef]g]oo

��

(a(b(cd)))[[ef]g]oo

��

[(a(b(cd)))[ef]]g //

��

[(a((bc)d))[ef]]g //

��

[((a(bc))d)[ef]]g //

��

[(((ab)c)d)[ef]]g

��

[((ab)(cd))[ef]]goo

��

[(a(b(cd)))[ef]]goo

��

[[(a(b(cd)))e]f]g // [[(a((bc)d))e]f]g // [[((a(bc))d)e]f]g // [[(((ab)c)d)e]f]g [[((ab)(cd))e]f]goo [[(a(b(cd)))e]f]goo

[(a(b(cd)))e][fg] //

OO

[(a((bc)d))e][fg] //

OO

[((a(bc))d)e][fg] //

OO

[(((ab)c)d)e][fg]

OO

[((ab)(cd))e][fg]oo

OO

[(a(b(cd)))e][fg]oo

OO

(a(b(cd)))[e[fg]] //

OO

(a((bc)d))[e[fg]] //

OO

((a(bc))d)[e[fg]] //

OO

(((ab)c)d)[e[fg]]

OO

((ab)(cd))[e[fg]]oo

OO

(a(b(cd)))[e[fg]]oo

OO

Part of the associahedra for seven letters.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

The Flexibility of Coherence

Notice that each row and column has three arrows one way
and two arrows the other way. That is, each row and column is
actually an instance of Mac Lane’s pentagon.

For readability, The figure on the next slide shows a
“zoomed-in” view of the upper left-hand corner of the last
figure.

The horizontal α maps move the round parentheses and the
vertical β maps move the square parentheses.

By examining the subscripts of the α and β maps, one sees
that each square commutes because of naturality.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

The Flexibility of Coherence

(a(b(cd)))[e[fg]]
(ida⊗αb ,c,d)⊗ide[fg]

//

ida(b(cd))⊗βe,f ,g

��

(a((bc)d))[e[fg]]
αa,bc,d⊗ide[fg]

//

ida((bc)d)⊗βe,f ,g

��

((a(bc))d)[e[fg]]

id(a(bc))d⊗βe,f ,g

��

(a(b(cd)))[[ef]g]
(ida⊗αb ,c,d)⊗id[ef]g

//

βa(b(cd)),ef ,g

��

(a((bc)d))[[ef]g]
αa,bc,d⊗id[ef]g

//

β((a(bc))d),ef ,g

��

((a(bc))d)[[ef]g]

β(a(bc))d,ef ,g

��

[(a(b(cd)))[ef]]g
(ida⊗αb ,c,d)⊗id[ef]g

// [(a((bc)d))[ef]]g
αa,bc,d⊗id[ef]g

// [((a(bc))d)[ef]]g

The top left part of the torus for seven letters.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

The Flexibility of Coherence

Notice also that the top row and the bottom row of the last part
of A7 are exactly the same.

Similarly, the left column is exactly the same as the right
column. (This is similar to the Pac-Man game screen, where
the players can go out the top and come in at the bottom and
go out the left and come in on the right.)

Since the top and the bottom rows are the same, we can
“bend the paper” and glue the edges together as in the next
figure.

Since the left and right columns are the same, we can “bend
the tube” and paste them together as depicted.

This means that within A7 there is a hollow doughnut or torus.

This is true for A7 and also true for any higher associahedra.
There are many other interesting shapes within the
associahedra, permutohedra, and permuto-associahedra.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

The Flexibility of Coherence

Folding part of the associahedra for seven letters into a torus.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

Examples

There are many other coherence conditions discussed in the
literature.

For example, we saw that we can require the reassociator to
be the identity (strict monoidal categories) or an isomorphism
(monoidal categories). What if we require that the
reassociator just be a morphism that satisfies the pentagon
condition?

A category with a monoidal product that has a reassociator
that need not be an isomorphism is called a pre-monoidal
category. There is a lot of applications for such structures in
diverse areas — including an application to quark
confinement in the physics literature.

We will see more coherence conditions in Chapter 7 where
we will discuss symmetric monoidal categories that fail the
symmetry condition. Such a categorical structure is called a
braided monoidal category.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

Examples

Not only are there many different types of coherence
conditions for categories, there are also many different
coherence conditions for functors.

We outlined some of the varieties in the definition But this is
not the end of the story.

In my thesis,there were functors F with a natural
transformation mapping funnel τ : ⊗′ ◦(F × F) =⇒ F ◦ ⊗ that
do not necessarily satisfy the hexagon coherence condition.

Various types of mapping funnels for n letters were studied.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

Examples

The point we are making in this section is that coherence
conditions are not toggle switches that are either on or off.

Rather, there are a whole spectrum of coherence conditions
and every coherence condition implies different properties.

The different structures are used to describe various
mathematical and real-world phenomena.

Just as algebra is used in every aspect of mathematics and
science, coherence theory — also called higher-dimensional
algebra — arises in many areas of mathematics and science.

It is certain we will see much more coherence theory in the
coming decades.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

Lecture Slides

Mini-course:

Duality Theory

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.3: When Coherence Fails

Foreshadowing

Chapter 6: Relationships Between Monoidal Categories
Section 6.4: Mini-course: Duality Theory

Boolean Algebras
Stone Duality

Baby Stone Duality
Juvenile Stone Duality
Stone Duality

Dualizing Objects
Esakia Duality
Priestley Duality
Pointless Topology

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Introduction to Duality Theory

Category theory unifies many different areas. One of the best
ways to unify two subjects is to show that two seemingly
different categories essentially have the same structure.

A duality theorem is a statement showing that there exists an
equivalence of one category with another, e.g., A ≃ B, or
more typically, Aop ≃ B.

This shows that the two categories are two ways of describing
the same structure. Categories that are dual to each other are
mirror images of each other, and we can study one category
by looking at the properties of the other.

A monomorphism in one category corresponds to an
epimorphism in the other category. An initial object in one
corresponds to a terminal object in the other.

Many times duality theorems are stated as adjunctions
between Aop and B. We look at subcategories of that are
equivalent.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Examples of duality that we already saw

Relop � Rel

KMatop � KMat

KFDVectop � KFDVect.

Notice that these examples are actually stronger than the usual
duality theorems because they are isomorphisms rather than
equivalences, and furthermore, they are instances of self duality,
i.e., they show a category equivalent to the opposite of itself.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Introduction to Duality Theory

Many other examples of duality theorems will be shown in this
mini-course.

We focus on a group of duality theorems collectively known as
Stone duality.

These theorems show that certain types of topological
structures are related to certain types of algebraic structures.

The algebraic structures are centered around Boolean
Algebras.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

One of the main purposes of this text is to show how different fields
are related and unified. Boolean algebra is a subject that has been
unifying different fields long before category theory came on the
scene. A Boolean algebra is a structure that is used in
mathematical logic, partial orders, logical circuits, and algebra.
One way to view a Boolean Algebra is as a special type of partial
order.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

Definition
A partial order P with a strict Cartesian category structure
(P,∧, 1) is a bounded meet semilattice.

Between such partial orders, we are interested in maps that
preserve the ∧, i.e., f(x ∧ y) = f(x) ∧ f(y), and preserve the
1, i.e., f(1) = 1.

The category of such partial orders and maps will be denoted
BMslattice.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice BMslattice

FinBoolAlg BoolAlg Blattice

.

HeytAlg BDlattice BJslattice

.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

FinBoolAlg BoolAlg Blattice

.

HeytAlg BDlattice BJslattice

.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

partial order

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

partial order

bounded meet
semi-lattice

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

Definition
A partial order P with a strict co-Cartesian category structure
(P,∨, 0) is a bounded join semilattice.

Between such partial orders, we are interested in maps that
preserve the ∨, i.e., f(x ∨ y) = f(x) ∨ f(y), and preserve the
0, i.e., f(0) = 0.

The category of such partial orders and maps will be denoted
BJslattice.

There is an isomorphism of categories
BMslattice −! BJslattice that takes every bounded
meet lattice (P,∧, 1) to the same underlying set of the partial
order with the opposite order (P,≤R , 1) where x ≤R y iff
y ≤ x. This isomorphism swaps ∧ for ∨, and 0 for 1.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

FinBoolAlg BoolAlg Blattice

.

HeytAlg BDlattice BJslattice

.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

FinBoolAlg BoolAlg Blattice

.

HeytAlg BDlattice

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

��A△

��

FinBoolAlg BoolAlg Blattice

.

HeytAlg BDlattice

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

partial order

bounded meet
semi-lattice

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

partial order

bounded meet
semi-lattice

bounded join
semi-lattice

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

Definition
A partial order P with a Cartesian and a co-Cartesian
structure (P,∧, 1,∨, 0) is called a bounded lattice.

The category of all such partial orders with maps that
preserves the two operations and the 0 and 1 is denoted
Blattice.

There are obvious forgetful functors
Blattice −! BMslattice and
Blattice −! BJslattice.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

��A△

��

FinBoolAlg BoolAlg Blattice

.

HeytAlg BDlattice

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

��A△

��

FinBoolAlg BoolAlg

Blattice .

HeytAlg BDlattice

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

��A△

��

FinBoolAlg BoolAlg

Blattice

U
88 88

U
&& &&

.

HeytAlg BDlattice

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

partial order

bounded meet
semi-lattice

bounded join
semi-lattice

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

partial order

bounded meet
semi-lattice

bounded join
semi-lattice

bounded
lattice

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

Definition
A bounded lattice that satisfies

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

and
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

is called a bounded distributive lattice.

The category of bounded distributive lattices has the same
maps as bounded lattices and is denoted BDlattice.

There is an inclusion functor BDlattice ↪−! Blattice.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

��A△

��

FinBoolAlg BoolAlg

Blattice

U
88 88

U
&& &&

.

HeytAlg BDlattice

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

��A△

��

FinBoolAlg BoolAlg

Blattice

U
88 88

U
&& &&

.

HeytAlg

BDlattice BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

��A△

��

FinBoolAlg BoolAlg

Blattice

U
88 88

U
&& &&

.

HeytAlg

BDlattice
+ �

99

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

partial order

bounded meet
semi-lattice

bounded join
semi-lattice

bounded
lattice

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

partial order

bounded meet
semi-lattice

bounded join
semi-lattice

distributive

bounded
lattice

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

Definition
A Heyting algebra is a bounded distributive lattice with a
binary operation⇒ which satisfies the following for all x, y,
and z in P

(x ∧ y) ≤ z if and only if y ≤ (x ⇒ z).

Categorically, this says that for every object x in the partial
order, the map x ∧ () has a right adjoint x ⇒ ().

Later we name a category where the product has such a right
adjoint a “Cartesian closed category.”

The category of all Heyting algebras and maps that preserves
∧, ∨,⇒, 0, and 1 is denoted HeytAlg.

There is a forgetful functor HeytAlg −! BDlattice.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

��A△

��

FinBoolAlg BoolAlg

Blattice

U
88 88

U
&& &&

.

HeytAlg

BDlattice
+ �

99

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

��A△

��

FinBoolAlg BoolAlg

Blattice

U
88 88

U
&& &&

.

HeytAlg BDlattice
+ �

99

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

��A△

��

FinBoolAlg BoolAlg

Blattice

U
88 88

U
&& &&

.

HeytAlg // // BDlattice
+ �

99

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

Definition
Within a bounded lattice, the complement of an element x is
an element y such that x ∧ y = 0 and x ∨ y = 1.

If a complement of an element exists, then it is unique, and we
denote the complement of x as x′.

A bounded lattice where every element has a complement is
called a complemented lattice.

The category of all complemented lattices and maps that
preserve the 0 and 1 and the operations is denoted
BClattice.

There is a forgetful functor BClattice −! Blattice.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice

BMslattice

��A△

��

FinBoolAlg BoolAlg

Blattice

U
88 88

U
&& &&

.

HeytAlg // // BDlattice
+ �

99

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice BMslattice

��A△

��

FinBoolAlg BoolAlg

Blattice

U
88 88

U
&& &&

.

HeytAlg // // BDlattice
+ �

99

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

BClattice
U

%% %%

BMslattice

��A△

��

FinBoolAlg BoolAlg

Blattice

U
88 88

U
&& &&

.

HeytAlg // // BDlattice
+ �

99

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

partial order

bounded meet
semi-lattice

bounded join
semi-lattice

distributive

bounded
lattice

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Towards the Definition of a Boolean Algebra

partial order

bounded meet
semi-lattice

bounded join
semi-lattice

distributive

complemented

bounded
lattice

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Definition of a Boolean Algebra

Definition
A Boolean algebra is a complemented, distributive lattice.

A map of Boolean algebras is a set function that preserve ∧,
∨, 0, and 1.

The category of all Boolean algebras and maps between them
is denoted BoolAlg.

There are inclusions BoolAlg ↪−! BClattice and
BoolAlg ↪−! BDlattice.

There is a full subcategory FinBoolAlg of Boolean
algebras with only a finite number of elements.

Every Boolean algebra can be seen as a Heyting algebra by
defining x ⇒ y as x′ ∨ y. This entails an embedding
BoolAlg ↪−! HeytAlg.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Definition of a Boolean Algebra

BClattice
U

%% %%

BMslattice

��A△

��

FinBoolAlg BoolAlg

Blattice

U
88 88

U
&& &&

.

HeytAlg // // BDlattice
+ �

99

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Definition of a Boolean Algebra

BClattice
U

%% %%

BMslattice

��A△

��

FinBoolAlg

BoolAlg Blattice

U
88 88

U
&& &&

.

HeytAlg // // BDlattice
+ �

99

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Definition of a Boolean Algebra

BClattice
U

%% %%

BMslattice

��A△

��

FinBoolAlg

BoolAlg� _

��

+ �

88

� s

%%

Blattice

U
88 88

U
&& &&

.

HeytAlg // // BDlattice
+ �

99

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Definition of a Boolean Algebra

BClattice
U

%% %%

BMslattice

��A△

��

FinBoolAlg BoolAlg� _

��

+ �

88

� s

%%

Blattice

U
88 88

U
&& &&

.

HeytAlg // // BDlattice
+ �

99

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Definition of a Boolean Algebra

BClattice
U

%% %%

BMslattice

��A△

��

FinBoolAlg
� � // BoolAlg� _

��

+ �

88

� s

%%

Blattice

U
88 88

U
&& &&

.

HeytAlg // // BDlattice
+ �

99

BJslattice.

Notice that the right triangle need not commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Definition of a Boolean Algebra

partial order

bounded meet
semi-lattice

bounded join
semi-lattice

distributive

complemented

bounded
lattice

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Definition of a Boolean Algebra

partial order

bounded meet
semi-lattice

bounded join
semi-lattice

distributive

complemented

Boolean algebra

finite BA

bounded
lattice

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Definition of a Boolean Algebra

We started with notions of a partial order and we found algebraic
operations. We can also go the other way and start by defining
algebraic operations and show that these entail a partial order
structure.

Definition

A Boolean algebra (B ,∧,∨, ()′, 0, 1) is

a set B,

with the following operations ∧ : B × B −! B and
∨ : B × B −! B, ()′ : B −! B,

and two constants 0 and 1.

The ∧ and ∨ are commutative and associative.

All three operations are idempotent, i.e. x ∧ x = x, x ∨ x = x,
and x′′ = x.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Definition of a Boolean Algebra

Theorem
The two definitions of Boolean algebras are equivalent.

Proof.
We saw that given the partial order we can form the meet and the
join using products and coproducts respectfully. One can also go
the other way: given the meet and the join, we determine the
partial order by defining x ≤ y when x ∧ y = x. Equivalently, we
can define x ≤ y when x ∨ y = y. □

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Properties of a Boolean Algebra

Theorem

The following are some equations that a Boolean algebra satisfies:

(i) (x ∨ y)′ = x′ ∧ y′ (ii) (x ∧ y)′ = x′ ∨ y′ (iii) x ∧ x = x (iv) x ∨ x = x

(v) x ∧ (x ∨ y) = x (vi) x ∨ 1 = 1 (vii) x ∧ 1 = x (viii) x ∨ 0 = x

(ix) x ∧ (y ∧ z) = (x ∧ y) ∧ z (x) x ∧ x′ = 0 (xi) x ∧ y = y ∧ x (xii) x ∧ 0 = 0

(xiii) x ∨ (y ∨ z) = (x ∨ y) ∨ z (xiv) x ∨ x′ = 1 (xv) x′′ = x (xvi) 0′ = 1.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Examples of Boolean Algebras

Example

The world’s smallest example of a Boolean algebra is the
partial order {∗} with one element. In this Boolean algebra
0 = 1 = ∗. This Boolean algebra is the terminal object in
BoolAlg.

The next smallest Boolean algebra is {0, 1} with 0 < 1 (i.e.
category 2 with two objects and a nontrivial morphism from 0
to 1). We denote this Boolean algebra as 2BA . The ∧
operations is 0 ∧ 0 = 1 ∧ 0 = 0 ∧ 1 = 0, and 1 ∧ 1 = 1. The ∨
operation is 1 ∨ 0 = 0 ∨ 1 = 1 ∨ 1 = 1, and 0 ∨ 0 = 0. We
have 0′ = 1 and 1′ = 0. This Boolean algebra is the initial
object in BoolAlg.

For any set S, the powerset of S, P(S), is a partial order and
a Boolean algebra. The operations are the intersection, ∪, the
union, ∩, and the complement, ()c , defined for T ⊆ S as
Tc = S − T.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Examples of Boolean Algebras

Example

Another way to view the powerset of a set as a Boolean
algebra is by thinking of characteristic functions. Let 2Set be
the set with two elements {0, 1}. For any set S, the
P(S) = HomSet(S, 2Set). This Hom set inherits the structure
of a Boolean algebra from 2Set . If f : S −! 2Set and
g : S −! 2Set , then (f ∧ g) : S −! 2Set is defined as
(f ∧ g)(s) = f(s) ∧ g(s) for all s ∈ S. The ∧ operation is
defined on 2Set as 2BA . There is a similar definition for ∨.
Function f ′ : S −! 2Set is defined as f ′(s) = 1 − f(s).

For any natural number n, the set (2BA)
n (the product of n

copies of 2BA) is also a Boolean algebra. The operations are
done point-wise. For example,
(0, 1, 1, 0, 1) ∨ (1, 1, 0, 0, 0) = (1, 1, 1, 0, 1) and
(0, 1, 1, 0, 1)′ = (1, 0, 0, 1, 0). Notice that (2BA)

n is the same
as Hom({1, 2, . . . , n}, 2Set).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Examples of Boolean Algebras

Example

Let N be a square free number, i.e., a number whose prime
decomposition does not have a prime number that is squared
or any higher power. For example, 105 = 3 · 5 · 7 or
715 = 5 · 11 · 13. The set of all the factors of N forms a
Boolean algebra. The ∧ is the highest common factor. For
example, if N = 105, then 15 ∧ 35 = (3 · 5) ∧ (5 · 7) = 5. The
∨ is the least common multiple. For example, if N = 105, then
15 ∨ 35 = (3 · 5) ∨ (5 · 7) = 105. If x is a factor, then x′ is the
product of all the prime factors not in x. For example, if
N = 105 then 3′ = 5 · 7 = 35. If N = 715, then
11′ = 5 · 13 = 65. The 0 of this Boolean algebra is the factor
1. The 1 of this Boolean algebra is N. In essence, this
example can be seen as the Boolean algebra P(S) where S
is the set of prime factors of N.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Examples of Boolean Algebras

Example
In a topological space, a closed set is a set whose
complement is an open set. A set is called closed-open set
or a clopen set if it is both open and closed, i.e., both the set
and its complement are open. Consider the set of clopen sets
of any topological space. Using DeMorgan’s law, one can see
that the union and intersection of clopen sets are clopen.
Similarly, the complements of clopen sets are clopen. The
empty set is clopen and is the 0. The whole topological space
is clopen and is the 1. We conclude that the clopen sets of a
topological space form a Boolean algebra.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Examples of Boolean Algebras

Example

If you know about finite automata (sometimes called finite
state machines), then you know that regular languages are
the languages that finite automata recognize. The collection
of all regular languages forms a Boolean algebra. This is
because the intersection, union, and complement of regular
languages are regular languages. The 0 of this Boolean
algebra is the empty language, and the 1 is Σ∗, the language
consisting of all words in the alphabet.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Properties of a Boolean Algebra

Before we start exploring Stone duality, there is another
duality associated with Boolean algebras.

The duality principle says that any true statement about
Boolean algebras is also true when all the joins are swapped
for meets, and the 0s are swapped for 1s.

This duality comes about when we swap a partial order ≤ with
its reverse partial order ≤R where x ≤R y iff y ≤ x.

Such a change in the partial order swaps ∧ for ∨ and swaps 0
for 1.

Categorically, this means that there is a functor
D : BoolAlg −! BoolAlg that takes every partial order
(P,≤) to (P,≤R).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Properties of a Boolean Algebra

Theorem
The same colored boxes are dual to each other.

(i) (x ∨ y)′ = x′ ∧ y′ (ii) (x ∧ y)′ = x′ ∨ y′ (iii) x ∧ x = x (iv) x ∨ x = x

(v) x ∧ (x ∨ y) = x (vi) x ∨ 1 = 1 (vii) x ∧ 1 = x (viii)x ∨ 0 = x

(ix) x ∧ (y ∧ z) = (x ∧ y) ∧ z (x) x ∧ x′ = 0 (xi) x ∧ y = y ∧ x (xii) x ∧ 0 = 0

(xiii) x ∨ (y ∨ z) = (x ∨ y) ∨ z (xiv) x ∨ x′ = 1 (xv) x′′ = x (xvi) 0′ = 1.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Baby Stone Duality

Theorem
The opposite of the category of finite Boolean algebras is
equivalent to the category of finite sets. That is,
FinBoolAlgop ≃ FinSet.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Baby Stone Duality

Proof.

There is a functor P : FinSet −! FinBoolAlgop that takes
a finite set S to the powerset of S, P(S), which is a finite
Boolean algebra.

This is the contravariant powerset functor which takes the set
function f : S −! T , to P(f) : P(T) −! P(S).

Such functions respect all the operations of a Boolean
algebra. For example, if X and Y are subsets of T , then

P(f)(X ∩ Y) = {x ∈ S : f(x) ∈ X ∩ Y }

= {x ∈ S : f(x) ∈ X} ∩ {x ∈ S : f(x) ∈ Y }

= P(f)(X) ∩ P(f)(Y).

The target of this functor is FinBoolAlgop .

□

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Baby Stone Duality

Proof.

There is an atom functor At : FinBoolAlgop −! FinSet

that is the quasi-inverse of P.

First a definition: within a Boolean algebra, an element a is
called an atom if there is nothing smaller than it other than 0.

Formally, a is an atom if 0 ⪇ a and for all x, if x ≤ a, then
x = a or x = 0. If you think of a Boolean algebra as a type of
lattice with 1 on the top and 0 on the bottom, then the set of
atoms are those elements right above 0.

For any finite Boolean algebra, every element b is made up of
the finite join of all the atoms that are less than b. In symbols,

b =
∨
{x : x is an atom, and x ≤ b}.

The functor At takes a finite Boolean algebra B to At(B), the
finite set of atoms of B.

□
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Baby Stone Duality

Proof.
These two functors form the equivalence stated in the
theorem.

For a finite Boolean algebra B, there is an isomorphism
ϕ : B −! P(At(B)). In detail, P(At(B)) is the powerset of
atoms of B. The isomorphism ϕ is defined as

b 7! {x : x is an atom, and x ≤ b}.

The map ϕ has the following properties:
ϕ is a surjection.
ϕ is an injection.
ϕ preserves 0 and 1.

□

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Baby Stone Duality

Proof.
For every finite set S, there is an isomorphism
ψ : S −! At(P(S)) = {{s} : s ∈ S}.

This isomorphism is the function defined by

s ∈ S 7! {s} ∈ At(P(S)).

It is easy to see that this function is an injection and a
surjection of sets.

□

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Baby Stone Duality

This duality theorem shows that every finite Boolean algebra
has 2n elements for some n.

Any two finite Boolean algebras of the same size are
isomorphic.

The way to see this is that if there are two Boolean algebras,
B1 and B2, both of size 2n, then there are two sets of atoms,
S1 and S2, each of size n. Two finite sets of the same size
entail a set isomorphism f : S1 −! S2. The functor P takes
isomorphisms to isomorphisms. By composing the
isomorphsims as follows

B2 −! P(S2) −! P(S1) −! B1,

we have shown that the Boolean algebras are isomorphic.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Baby Stone Duality

Before we move on to the next step, it will be useful to look at
the functors from a more categorical prospective.

The functor P is defined as P(S) = HomSet(S, 2Set) where
2Set is the set with two elements.

The functor At can also be seen from a more categorical
prospective. Consider an atom a in Boolean algebra B. We
can view this atom as a Boolean algebra map fa : B −! 2BA

defined as

fa(b) =

1 : a ≤ b

0 : a ≰ b .

In words, fa takes all those elements above a to 1 and the rest
to 0. Thus, the set of atoms At(B) for a finite Boolean algebra
B can be seen as a subset of HomFinBoolAlg(B , 2BA). We
will generalize this soon.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop

≃

Esakia

BoolAlgop

≃

Stone

CABoolAlgop

≃

Set

FinBoolAlgop
At

--
≃ FinSet

P

nn

The second square from the bottom doesn’t commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop

≃

Esakia

BoolAlgop

≃

Stone

CABoolAlgop

≃

Set

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Juvenile Stone Duality

While finite sets are fine, let us generalize to all sets.

In order to do that we will need to explore beyond finite
Boolean algebras.

The powerset of an infinite set is an infinite Boolean algebra.

What other properties will the powerset of an infinite set have?

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Juvenile Stone Duality

Definition

Taking the meets and joins a finite number of times gives us
all finite meets and joins. A Boolean algebra that has arbitrary
(not just finite) meets and joins is called complete.
Categorically, this says the partial order category has all
products and coproducts. If X is an arbitrary subset of
elements of a Boolean algebra, then we write

∨
x∈X x for their

join, and
∧

x∈X x for their meet.

A Boolean algebra is atomic if every element is the join of a
set of its atoms (0 is the join of the empty set of atoms).

The collection of all complete, atomic Boolean algebras and
Boolean algebra homomorphisms is denoted CABoolAlg
Thus we have the following embeddings:

FinBoolAlg
� � // CABoolAlg

� � // BoolAlg.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Juvenile Stone Duality

Theorem
The opposite of the category of complete atomic Boolean algebras
is equivalent to the category of sets, that is CABoolAlgop ≃ Set.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Juvenile Stone Duality

Proof.
The proof follows almost exactly like the previous proof.

There is a functor P : Set −! CABoolAlgop which is
defined for a set S as P(S) = HomSet(S, 2Set). For any set S
— finite or infinite — the powerset P(S) is complete because
it has arbitrary large unions and intersections. It is also atomic
because the singletons are atoms, and every set is the
arbitrary union of its single elements. Thus we have that the
powerset of any set is a complete atomic Boolean algebra.

There is a functor At : CABoolAlgop −! Set that takes
any complete atomic Boolean algebra to its set of atoms.

For a complete atomic Boolean algebra B, there is an
isomorphism ϕ : B −! P(At(B)).

For an arbitrary set S, there is an isomorphism
ψ : S −! At(P(S)) = {{s} : s ∈ S}.

□
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Juvenile Stone Duality

Remark
A consequence of this theorem is that we now have a way of
thinking about the category Setop .

This category is not a typical category (technically called a
concrete category) where every morphism corresponds to
some type of function.

In Set there is a unique function ∅ −! {∗} which corresponds
to a unique map {∗} −! ∅ in Setop . What can this morphism
mean?

It takes the element ∗ to where? By meditating on our theorem
which says CABoolAlg ≃ Set.op we can think of Setop as
follows: the objects are sets and a morphism S −! T
corresponds to the Boolean morphisms P(S) −! P(T).

In particular, the morphism {∗} −! ∅ in Setop corresponds to
the Boolean algebra homomorphism
P(∅) = {∗} −! P({∗}) = {0, 1} with ∗ 7! 1.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Juvenile Stone Duality

Remark

This way of understanding Setop provides an important idea
useful in understanding the rest of this mini-course.

A morphism fx : {∗} −! S in Set (and Top) picks out the
element x in S.

Corresponding to fx in Set is a morphism f̄x : S −! {∗} in
Setop and a Boolean algebra homomorphism
f̂x : P(S) −! P({∗}) = {0, 1}.

The homomorphism f̂x is a characteristic function that picks
out those subsets of S (elements of P(S)) that contain x.

This idea — that maps picking out an element are equivalent
to maps which determine if that element is in a subset — is
absolutely central to Stone duality and all of its
generalizations.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Juvenile Stone Duality

Before we move on, it pays to think of sets from a more
general point of view.

Let S and T be sets. We can think of these sets as topological
spaces with the discrete topologies (S, σd) and (T , τd).

From this perspective, it is important to notice that
HomSet(S,T) = HomTop((S, σd), (T , τd)). In other words,
one can think of sets as special types of topological spaces
where every map between the topological spces is considered
continuous.

This entails an inclusion functor Set ↪−! Top. Another way
to say this is that the category of sets is equivalent to the
subcategory of topological spaces where all the topologies
are discrete. Notice also that when using the discrete
topology, all open sets are also closed sets, i.e., every open
set is clopen. We will continue our journey using the language
of topology rather than sets.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop

≃

Esakia

BoolAlgop

≃

Stone

CABoolAlgop

≃

Set

FinBoolAlgop
At

--
≃ FinSet

P

nn

The second square from the bottom doesn’t commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop

≃

Esakia

BoolAlgop

≃

Stone

CABoolAlgop ≃ Set

FinBoolAlgop
At

--
≃ FinSet

P

nn

The second square from the bottom doesn’t commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop

≃

Esakia

BoolAlgop

≃

Stone

CABoolAlgop
At

,,
≃ Set

P

nn

FinBoolAlgop
At

--
≃ FinSet

P

nn

The second square from the bottom doesn’t commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop

≃

Esakia

BoolAlgop

≃

Stone

CABoolAlgop
At

,,
≃ Set

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Stone Duality

Let us generalize from complete atomic Boolean algebras to all
Boolean algebras. To do that, we need to go beyond sets. We
define special types of topological spaces.

Definition
A topological space is compact if it has a type of finiteness
condition. Formally, a topological space T is compact if every
collection C = {Vi} of open sets of T which has the property
that the union of those open sets is equal to the entire T, has
a finite subset C̄ ⊂ C such that the union of all the open sets
in C̄ is also equal to the entire space T. Intuitively, this says
that the topological space does not need many open sets to
cover it. Notice that an infinite topological space with the
discrete topology is not compact because the cover consisting
of the infinite set of elements does not have a finite subcover.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Stone Duality

Definition
A topological space is Hausdorff if any two points in the
space can be separated by two disjoint open sets. Formally, a
topological space T is Hausdorff if for any two different points
x and y, there exists open sets A and B such that x ∈ A and
y ∈ B with A ∩ B = ∅. Intuitively, a Hausdorff space has a lot
of open sets to separate points.

A topological space is totally disconnected if the connected
components in are the one-point sets.

A topological space is a Stone space if it is compact,
Hausdorff, and totally disconnected.

The category of Stone spaces and continuous maps between them
is denoted Stone.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Stone Duality

Theorem
The opposite of the category of Boolean algebras is equivalent to
the category of Stone spaces, that is BoolAlgop ≃ Stone.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Stone Duality

Proof.

There is a functor Clp : Stone −! BoolAlgop which is
defined for Stone space T as Clp(T) = HomStone(T , 2SS)
where 2SS is the two-object Stone space {0, 1}.

Within 2SS , both {0} and {1} are open (and hence closed) sets.

The functor Clp takes any Stone space to the Boolean
algebra of its clopen sets.

There is a functor Ulf : BoolAlgop −! Stone which is
defined for a Boolean algebra B as
Ulf(B) = HomBoolAlg(B , 2BA). This Hom set is a Stone
space.

□

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Stone Duality

In order to ensure that the reader can better communicate with
poor souls who do not already know category theory, we will
describe these maps in a non-categorical language.

Definition
For a Boolean algebra map f : B −! 2BA , the set of elements that
go to 1, i.e. F = f−1(1), form a structure called an ultrafilter.
Following Remark ??, we might think of these ultrafilters as types
of elements of B. The set F satisfies the following list of properties:

F is a filter because
F is non-empty: for example, 1 ∈ F (because f(1) = 1.)
F is upward closed: if a ∈ F and a ≤ b, then b ∈ F (because f
is order preserving.)
F is closed under meet: if a ∈ F and b ∈ F, then a ∧ b ∈ F
(because f preserves the meet.)

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Stone Duality

Definition
F is proper filter: F does not contain everything, i.e., F , B
or equivalently 0 < F (because f(0) = 0).

F is prime filter: If a ∨ b ∈ F, then a ∈ F or b ∈ F (because
f(a ∨ b) = f(a) ∨ f(b)).

F is maximal filter. For all a ∈ B, either a ∈ F or a′ ∈ F
(because f(a′) = f(a)′, so either f(a) = 1 or f(a′) = 1).

For each a ∈ B there is a special filter called a principle filter
generated by a which is {b ∈ B : a ≤ b}. This corresponds to the
map fa : B −! 2BA . For a Boolean algebra, the principle filter
generated by a is an ultrafilter if and only if a is an atom.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop

≃

Esakia

BoolAlgop

≃

Stone

CABoolAlgop
At

,,
≃ Set

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop

≃

Esakia

BoolAlgop ≃ Stone

CABoolAlgop
At

,,
≃ Set

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop

≃

Esakia

BoolAlgop
Ulf

,,
≃ Stone

Clp
mm

CABoolAlgop
At

,,
≃ Set

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop

≃

Esakia

BoolAlgop
Ulf

,,
≃ Stone

Clp
mm

CABoolAlgop?�

OO

At
,,

≃ Set
?�

�A□

OO

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop

≃

Esakia

BoolAlgop
Ulf

,,
≃ Stone

Clp
mm

CABoolAlgop?�

OO

At
,,

≃ Set
?�

�A□

OO

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

About Stone Duality

Remark
We have seen the object 2 in many different contexts. (See
Important Categorical Idea.)

It is the collection with two objects that form a set, a partial
order, a Boolean algebra, and a Stone space. There will be
more soon.

We distinguish the various 2’s with subscripts as 2Set , 2BA and
2SS .

Such an structure that has various incarnations in different
categories is called a dualizing object or a schizophrenic
object. The duality depends on such dualizing objects.

It is again the power of category theory to see many different
duality theorems as coming from one idea. The point of these
dualizing objects is that category theory does not neatly
separate different structures in different areas. Rather these
objects connect and unify different areas.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

About Stone Duality

Remark
These proofs of the isomorphisms of the duality theorem are
very similar to the proof where we showed a finite dimensional
vector space is naturally isomorphic to its double dual.

That is, for a finite dimensional vector space V, there is an
isomorphism

V −! HomKFDVect(HomKFDVect(V ,K),K).

Once again category theory shows connections between
disparate areas. The ideas of Stone duality take us back to
where Eilenberg and Mac Lane started category theory.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

About Stone Duality

History

This fact that every Boolean algebra is isomorphic to some
collection of sets of elements (subsets or clopens) is called
Stone’s representation theorem.

It was proved by Marshall H. Stone in 1936 (before category
theory existed). It is the main theorem of this field.

One of the consequences of the theorem is that one can
easily check some fact about Boolean algebras by simply
testing them on collections of a set.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

About Stone Duality

Marshall H. Stone

(1903-1989)

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Esakia Duality

Let us generalize from Boolean algebras to Heyting algebras.

This was done by Leo Esakia in 1974.

We will now deal with partial orders that are not necessarily
complemented but have an⇒ operation.

In order to deal with Heyting algebras, we have to be
concerned with topological spaces with more structure. The
extra idea needed is an ordering.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Esakia Duality

Definition

Given a partial order (P,≤), an upward-closed set X is a set
such that for all x ∈ X, we have x ≤ y implies y ∈ X.

An ordered topological space (T , τ,≤) is a set T, a topology
τ on the set T, and a partial order ≤ on the set T.
An Esakia space is a Stone space such that

upward-closed sets are closed: for all x ∈ T,
" x = {y ∈ T : x ≤ y} is closed, and
downward-clopen sets are clopen: for all clopen C ⊆ X, the set

C = {y ∈ T : y ≤ x for some x ∈ C}

is clopen.

The category of Esakia spaces and their morphisms is
denoted Esakia. There is an inclusion Stone ↪−! Esakia.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Esakia Duality

Theorem
The opposite of the category of Heyting algebras is equivalent to
the category of Esakia spaces, that is HeytAlgop ≃ Esakia.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop

≃

Esakia

BoolAlgop
Ulf

,,
≃ Stone

Clp
mm

CABoolAlgop?�

OO

At
,,

≃ Set
?�

�A□

OO

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop ≃ Esakia

BoolAlgop
Ulf

,,
≃ Stone

Clp
mm

CABoolAlgop?�

OO

At
,,

≃ Set
?�

�A□

OO

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop
Prf

--
≃ Esakia

Clp
mm

BoolAlgop
Ulf

,,
≃ Stone

Clp
mm

CABoolAlgop?�

OO

At
,,

≃ Set
?�

�A□

OO

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop
Prf

--
≃ Esakia

Clp
mm

BoolAlgop
Ulf

,,
≃ Stone

?�

OO

Clp
mm

?�

OO

CABoolAlgop?�

OO

At
,,

≃ Set
?�

�A□

OO

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Priestley Duality

Let us generalize from Heyting algebras to bounded
distributive lattices.

This was done by Hilary Priestley in the early 1970’s.

In doing this, we deal with partial orders that do not even have
a⇒ operation.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Priestley Duality

Definition
An ordered topological space is a Priestley space if it
satisfies the Priestley separation axiom:

If x ≰ y, then there exists a clopen up-set U such that x ∈ U
and y < U.

A morphism between two Priestley spaces is continuous and
order-preserving.

The collection of all Prieslty spaces and their morphisms form
the category Priestley.

There is an inclusion Esakia ↪−! Priestley.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Priestley Duality

Theorem
The opposite of the category of bounded distributive lattice is
equivalent to the category of Priestley spaces, that is
BDlatticeop ≃ Priestley.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop

≃

Priestley

HeytAlgop
Prf

--
≃ Esakia

Clp
mm

BoolAlgop
Ulf

,,
≃ Stone

?�

OO

Clp
mm

?�

OO

CABoolAlgop?�

OO

At
,,

≃ Set
?�

�A□

OO

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop ≃ Priestley

HeytAlgop
Prf

--
≃ Esakia

Clp
mm

BoolAlgop
Ulf

,,
≃ Stone

?�

OO

Clp
mm

?�

OO

CABoolAlgop?�

OO

At
,,

≃ Set
?�

�A□

OO

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop
Prf

--
≃ Priestley

Clp
mm

HeytAlgop
Prf

--
≃ Esakia

Clp
mm

BoolAlgop
Ulf

,,
≃ Stone

?�

OO

Clp
mm

?�

OO

CABoolAlgop?�

OO

At
,,

≃ Set
?�

�A□

OO

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

The Big Picture of Stone Duality

Algebra Topology

BDlatticeop
Prf

--
≃ Priestley

Clp
mm

HeytAlgop?�

OO

Prf
--

≃ Esakia
?�

OO

Clp
mm

BoolAlgop
Ulf

,,
≃ Stone

?�

OO

Clp
mm

?�

OO

CABoolAlgop?�

OO

At
,,

≃ Set
?�

�A□

OO

P

nn

FinBoolAlgop?�

OO

At
--

≃ FinSet
?�

OO

P

nn

The second square from the bottom doesn’t commute.
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Pointless Topology

Stone duality is not the only duality that shows a relationship
between algebraic and topological ideas.

Pointless topology is related to Stone duality and shows
another relationship.

A topological space is a set of points with open sets that
satisfy certain requirements.

The central question: To what extent are the properties of a
topological space determined by the structure of the open
sets (while ignoring the points)?

This gives us the humorous title of “pointless topology.”

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Pointless Topology

There is a functor O that takes every topological space (T , τ)
to the partial order O(T).

This partial order reflects the structure of the subsets of the
topological space with the meet, ∧, being the intersection of
open sets, and the join, ∨, being the union of open sets.

As such, the partial order has finite meets and all joins. The
partial order also satisfies a distributivity requirement.

Let us make a formal definition of such a partial order.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Pointless Topology

Definition
A locale L is a partial order that has all finite meets and
arbitrary joins. Furthermore, there is a requirement that an
infinite distributive law is satisfied:

for any element U ∈ L and any set of elements {Vi} in L, we
have

U ∧
∨

i

Vi =
∨

i

(U ∧ Vi).

Morphisms between locales are interesting. We want such
morphisms to mimic continuous maps between topological
spaces. Remember that f : T1 −! T2 is a continuous map of
topological spaces if f−1 takes open sets to open sets. The
important point is that f−1 goes the other way. With this in
mind, we define a morphism of locales f : L1 −! L2 to be a
map such that f−1 preserves finite meets and all joins.

The collection of locales and locale maps forms a category
Locale.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Pointless Topology

Definition
A better way to deal with the awkwardness of the directions of
the maps is to discuss the opposite of the category of locales.
Define a frame exactly as a locale was defined.

A morphism of frames f : F1 −! F2 is a map of partially
ordered sets that preserves finite meets and all joins.

The collection of all frames and frame morphisms is denoted
Frame, and by definition Locale = Frameop .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Pointless Topology

Now for the duality of the topological structures and the partial
orders.

Theorem
There is an adjunction between the category of locales — which is
the opposite of the category of frames — and the category of
topological spaces.

Frameop
Pt

,,
⊤ Top

O

mm

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Pointless Topology

Proof.

The functor O : Top −! Frameop takes every topological
space (T , τ) to O(T), the frame of its open sets.

Every map of topological spaces f : (T1, τ1) −! (T2, τ2) goes
to the frame map f−1 : O(T2) −! O(T1).

The functor that goes the other way picks out the set of points
of a frame Pt : Frameop −! Top.

This functor takes every frame F to the topological space
Pt(F).

The points of the topological space are defined as the frame
maps from F to 2Fr which is the two-element partial order
0 < 1, i.e.,

Pt(F) = HomFrame(F , 2Fr) = HomLocale(2Fr ,F).

The frame of ∗ is the partial order ∅ < {∗}, i.e., 2Fr .

□Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Pointless Topology

Proof.
There is an adjunction:

HomTop(T ,Pt(F)) �

HomLocale(O(T),F) � HomFrame(F ,O(T)).

The unit of the adjunction for a topological space T is

T −! HomFrame(O(T), 2Fr)

which is defined for x ∈ T as

x 7! fx : O(T) −! 2Fr .

For an open set O ∈ O(T), fx(O) = 1 if and only if x ∈ O . In
other words, fx picks out those open sets that contain x.

□

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Pointless Topology

Proof.
The counit of the adjunction for a frame F is

F −! O(HomFrame(F , 2Fr))

which is defined for a ∈ F as

a 7! {f : F −! 2Fr : f(a) = 1}.

This means that a goes to all the frame maps that pick out a.

□

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Pointless Topology
The subcategories where the unit and counit of this adjunction are
isomorphisms form an equivalence of categories. First some
definitions.

Definition
A sober space is a topological space T such that every
nonempty closed subset of T that cannot be separated is the
closure of exactly one point.

A space that is not sober will have some closed set that
cannot be separated with two or more points.

Perhaps we should call a space that is not sober a “Tequila
space.”

Such a space has enough closed spaces.

The category of all sober spaces and continuous maps
between them is denoted as Sober. A space is sober exactly
when the above unit is an isomorphism (homeomorphism) of
topological spaces.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Pointless Topology

Definition
A frame F is a spatial frame if for any a and b in F with a ≰ b,
there is a f : F −! 2Fr such that f(a) = 1 and f(b) = 0.

In other words, there is a point of F that separates a and b.

A frame is spatial exactly when the counit of the above
adjunction is an isomorphism of frames.

One can think of such frames as having enough objects.

The collection of all spatial frames and frame morphisms is
denoted SFrame.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

Pointless Topology

Thus we have proven the following.

Theorem
The above adjunction induces an equivalence of categories
between the category of spatial frames and the category of sober
spaces. In summary:

Frameop
Pt

,,
⊤ Top

O

mm

SFrameop
Pt

,,?�

OO

≃ Sober.
O

mm

?�

OO

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 6.4: Mini-course: Duality Theory

