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Introduction

Many times in these pages we have seen that objects and
morphisms in certain categories can be combined.
The first time we met this idea was with sets. We saw the
formation of the Cartesian product in the category Set. Given
two sets S and T , we form S × T .
Furthermore, given two set maps f : S −! T and
g : S′ −! T ′, we form the map f × g : S × S′ −! T × T ′.
We also saw that we can combine sets by taking their disjoint
union.
Other examples of combining include taking the product of
two partial orders and two groups.
All these categories where one can combine objects and
morphisms are examples of monoidal categories.
The word “monoidal” comes from the fact that these
categories with extra structure are reminiscent of monoids
where elements are combined.
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Introduction
Monoidal categories come in many different varieties. The
differences depend on what rules the combination of objects
and morphisms follow.
To get a feel for this, let us remember some basic arithmetic.
There are operations ⊗ on numbers (such as + or ×) that
satisfy the associativity axiom, a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c.
There are also operations (such as − and ÷) that fail this
associativity axiom.
There are similar notions about commutativity where there are
some operations ⊗ (such as + or ×) that satisfy the
commutativity axiom and there are some operations (such as
− and ÷) that do not..
The story with categories is even more varied. We will see
that for categories there can be many different possible
relationships between a ⊗ (b ⊗ c) and (a ⊗ b) ⊗ c. Similarly,
for commutativity. The many possibilities make the theory of
monoidal categories very rich.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 5.1: Strict Monoidal Categories



Foreshadowing

Chapter 5: Monoidal Categories
Section 5.1 Strict Monoidal Categories

Definitions
Examples
Examples With Matrices

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 5.1: Strict Monoidal Categories



Basic Definitions
We begin with the simplest possible type of a monoidal category.

Definition

A strict monoidal category (A,⊗, I) is a category A with the
following extra structure:

A way of combining objects and morphisms: a bifunctor
⊗ : A ×A −! A called the tensor product or monoidal
product, and

An object I of A called the unit.

This extra structure satisfies the following requirements

The bifunctor ⊗ is associative: for all objects a, b , and c of A,
a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c. Similarly, for all morphisms f , g, and
h, f ⊗ (g ⊗ h) = (f ⊗ g) ⊗ h. We say the tensor product is
strictly associative.

The I acts like a two-sided unit of ⊗: for all objects a of A,
a ⊗ I = a = I ⊗ a.
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Examples

Example

(N,+, 0).

A simple example of a strict monoidal category is the natural
numbers with addition.

The objects of the category are the natural numbers.

The morphisms are only identities.

The tensor product is addition and the unit is 0.

It is also easy to see that for the same discrete category N,
the multiplication and unit 1 form a strict monoidal category
(N, ·, 1).
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Examples

Example

We just saw the discrete category (N,+, 0) is a strict
monoidal category.

If we look at N as a total order, then it is also a strict monoidal
category.

One must check that the bifunctor preserves addition, i.e., If
m ≤ m′ and n ≤ n′ then m + n ≤ m′ + n′.

This not only works for addition but also for multiplication,
which means that (N, ·, 1) is a strict monoidal category.

These two strict monoidal operations are not independent of
each other. Rather, the multiplication distributes over the
addition.

Along the same lines, the totally ordered real numbers R has
two strict monoidal category structures (R,+, 0) and
(R+, ·, 1). These two monoidal structures are related as well.
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Examples

Example

(Σ∗, •, ∅).

An example of a strict monoidal category that will be very
important in the coming pages is the monoid of strings in an
alphabet.

Let Σ be an alphabet, that is, a finite set of symbols (or
letters).

The set of all strings (or words, or lists) of symbols in Σ,
denoted Σ∗, forms a monoidal category.

The objects of the category are strings and the only
morphisms are identity morphisms.

The tensor product of the monoidal category is concatenation
• (combining one string after another) . That is, given two
strings, w and w′, their tensor is simply their concatenation
w • w′. This operation is associative.
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Examples

Example (Continued.)

The empty string ∅ is the unit: w • ∅ = w = ∅ • w.

As special instances of such strict monoidal categories,
consider the strict monoidal categories of strings in one
symbol, ({1}∗, •, ∅) and strings of two symbols ({0, 1}∗, •, ∅).
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Examples
The collections of objects in the above examples are all monoids.
Let us make a general statement about all monoids.

Example

(M, ⋆, e). Any monoid can be thought of as a strict monoidal
category. The category is d(M), the discrete category of elements
of M. The tensor product is the monoid multiplication ⋆, and the
unit of the strict monoidal category is the unit of the monoid.

Notice that category theorists can think of a monoid as a category
in at least two different ways.

On the one hand, they are one-object categories where the
morphisms come and go to the single object.

On the other hand, a monoid is a discrete category with a
monoidal category structure where the tensor product is the
monoid multiplication.

We have to specify what we mean.
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Examples

Example

(P,∧, 1).

Any partial order category (P,≤) that has products is a strict
monoidal category.

We call the product meet and write it as ∧.

For any three objects, p, q, and r, we have
p ∧ (q ∧ r) = (p ∧ q)∧ r, which means the meet is associative.

The unit is the terminal object, 1, which satisfies p ∧ 1 = p.

For any objects, p and q, we have p ∧ q = q ∧ p, which
means that meet is commutative.

Such a partial order is called a bounded meet semilattice.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 5.1: Strict Monoidal Categories



Examples

Example

The same is true for a partial order category with coproducts
where the operation is called join and denoted as ∨.

The unit is the initial object, 0.

In that case, we have the strict monoidal category (P,∨, 0).

Such a partial order is called a bounded join semilattice.

A special case of partial order category is the following:
(2 = {0, 1},∧, 1). The partial order with two elements such
that 0 ≤ 1 is a strict monoidal category. For completeness, let
us just give the monoidal structure:
0∧ 0 = 0, 0∧ 1 = 0, 1∧ 0 = 0 , and 1∧ 1 = 1. From these we
can see the associativity and the fact that 1 is the unit.
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Examples

The next example will be very important in coherence theory.

Example

(AA, ◦, IdA).

Let A be any category.

The category AA consists of functors from A to A
(endofunctors) and natural transformations between such
functors.

This category has a strict monoidal category structure.

The tensor product of objects is the composition ◦. In detail, if
F : A −! A and G : A −! A, then the tensor product is
F ◦ G.

Notice that both F ◦ G and G ◦ F exist but need not be equal.
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Examples

Example (Continued.)

The tensor of morphisms (natural transformations)
α : F =⇒ F ′ and β : G =⇒ G′ is β ◦ α = β ◦H α, where ◦H is
horizontal composition of natural transformations.

Vertical composition of natural transformations is the regular
composition of maps in AA.

The unit of the monoidal structure is the identity functor IdA.
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Examples With Matrices

Remark
Some foreshadowing is warranted.

The category of matrices and the category of finite
dimensional vector spaces are intimately related.

In this chapter, we will show that the category of matrices has
two monoidal structures which we will denote as ⊕ and ⊗.

Related to these are two monidal structures on the category
of finite dimensional vector spaces which are denoted by the
same symbols.

Exactly how matrices and vector spaces are related and how
all these different structure are united, will be formalized in
Chapter 6. Keep in mind the larger picture while going through
the technical details.
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Examples With Matrices

Example

(KMat,⊕, 0). The category KMat has a strict monoidal structure
called the direct sum which is denoted by ⊕. On objects, the
monoidal structure is defined as m ⊕ n = m + n. Remember that a
morphism A : n −! m corresponds to an m by n matrix and is
denoted as Am,n. The m by n matrix with all zeros is denoted as
0m,n. The direct sum is defined as

Am,n ⊕ Bm′,n′ =

Am,n 0m,n′

0m′,n Bm′,n′


which is an m + m′ by n + n′ matrix.
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Examples With Matrices

Example (Continued.)

Formally, the direct sum of matrices is a function

⊕ : Cm×n ×Cm′×n′ −! C(m+m′)×(n+n′)

and is defined as

(A ⊕ B)[j, k ] =


A [j, k ] : if j ≤ m and k ≤ n

B[j −m, k − n] : if j > m and k > n

0 : otherwise.
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Examples With Matrices

Example (Continued.)

This operation preserves matrix multiplication (which is morphism
composition in this category):

(Am,n ⊕ Bm′,n′) · (A ′n,p ⊕ B′n′,p′) =

Am,n 0m,n′

0m′,n Bm′,n′

 ·
A ′n,p 0n,p′

0n′,p B′n′,p′


=

Am,n · A ′n,p 0m,p′

0m′,p Bm′,n′ · B′n′,p′


= (Am,n · A ′n,p) ⊕ (Bm′,n′ · Bn′,p′).

This equation is yet another instance of the ubiquitous interchange
law (See Important Categorical Idea).
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Examples With Matrices

Example (Continued.)

The unit for ⊕ is 0, i.e., n ⊕ 0 = n + 0 = n. We are employing a
morphism which represents a (non-existent) zero-by-zero matrix
with nothing in it.
One can see that ⊕ is strictly associative as follows:

(Am,n ⊕ Bm′ ,n′ ) ⊕ Cm′′ ,n′′ =


Am,n 0m,n′

0m′ ,n Bm′ ,n′

 0m+m′ ,n′′

0m′′ ,n+n′ Cm′′ ,n′′



=


Am,n 0m,n′ 0m,n′′

0m′ ,n Bm′ ,n′ 0m′ ,n′′

0m′′ ,n 0m′′ ,n′ Cm′′ ,n′′



=


Am,n 0m,n′+n′′

0m′+m′′ ,n

Bm′ ,n′ 0m′ ,n′′

0m′′ ,n′ Cm′′ ,n′′




= Am,n ⊕ (Bm′ ,n′ ⊕ Cm′′ ,n′′ ).
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Examples With Matrices

There is another strict monoidal structure on KMat.

Example

(KMat,⊗, 1). On objects, ⊗ is defined as m ⊗ n = m · n. The
tensor of Am,n with Bm′,n′ is the Kronecker product of matrices
Am,n ⊗ Bm′,n′ , which is defined as follows: every entry of Am,n is
scalar multiplied with the matrix Bm′,n′ . Examples are as follows.
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Examples With Matrices

Example (Continued.)



a0

a1

a2

a3


⊗


b0

b1

b2

 =



a0 ·


b0

b1

b2


a1 ·


b0

b1

b2


a2 ·


b0

b1

b2


a3 ·


b0

b1

b2





=



a0b0

a0b1

a0b2

a1b0

a1b1

a1b2

a2b0

a2b1

a2b2

a3b0

a3b1

a3b2



.

The Kronecker product of two vectors. Every entry in the first
vector is scalar multiplied with the second vector.
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Examples With Matrices

Example (Continued.)
For matrices

A =

 a0,0 a0,1

a1,0 a1,1

 and B =


b0,0 b0,1 b0,2

b1,0 b1,1 b1,2

b2,0 b2,1 b2,2

 ,

the Kronecker product is

A ⊗ B =



a0,0 ·


b0,0 b0,1 b0,2

b1,0 b1,1 b1,2

b2,0 b2,1 b2,2

 a0,1 ·


b0,0 b0,1 b0,2

b1,0 b1,1 b1,2

b2,0 b2,1 b2,2


a1,0 ·


b0,0 b0,1 b0,2

b1,0 b1,1 b1,2

b2,0 b2,1 b2,2

 a1,1 ·


b0,0 b0,1 b0,2

b1,0 b1,1 b1,2

b2,0 b2,1 b2,2





=



a0,0 · b0,0 a0,0 · b0,1 a0,0 · b0,2 a0,1 · b0,0 a0,1 · b0,1 a0,1 · b0,2

a0,0 · b1,0 a0,0 · b1,1 a0,0 · b1,2 a0,1 · b1,0 a0,1 · b1,1 a0,1 · b1,2

a0,0 · b2,0 a0,0 · b2,1 a0,0 · b2,2 a0,1 · b2,0 a0,1 · b2,1 a0,1 · b2,2

a1,0 · b0,0 a1,0 · b0,1 a1,0 · b0,2 a1,1 · b0,0 a1,1 · b0,1 a1,1 · b0,2

a1,0 · b1,0 a1,0 · b1,1 a1,0 · b1,2 a1,1 · b1,0 a1,1 · b1,1 a1,1 · b1,2

a1,0 · b2,0 a1,0 · b2,1 a1,0 · b2,2 a1,1 · b2,0 a1,1 · b2,1 a1,1 · b2,2


.

The Kronecker product of matrices. Every entry in the first matrix
is scalar multiplied with the second matrix.
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Examples With Matrices

Example (Continued.)

Formally, the tensor product of matrices is a function

⊗ : Cm×n ×Cm′×n′ −! C(m·m′)×(n·n′)

and is defined as

(A ⊗ B)[j, k ] = A [⌊j/m′⌋, ⌊k/n′⌋] · B[j Mod m′, k Mod n′].

The unit of the monoidal structure is the 1 and the unit morphism is
the 1 by 1 identity matrix [1].
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Examples

Exercise
Prove that the Kronecker product of matrices respects matrix
multiplication, i.e.,

(Am,n · A ′n,p) ⊗ (Bm′,n′ · B′n′,p′) = (Am,n ⊗ Bm′,n′) · (A ′n,p ⊗ B′n′,p′).

(Yet another instance of the ubiquitous interchange law. See
Important Categorical Idea.)
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Basic Definitions

While we discuss many variations of strict monoidal categories in
Chapter 7, there is one variation that arises with many of our
examples, and it pays to describe it now.

Definition

A strict monoidal category (A,⊗, I) is strictly symmetric if for all
objects a and b in A, we have a ⊗ b = b ⊗ a, and for all
morphisms f , g, we have f ⊗ g = g ⊗ f .
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Examples

Example

Of the examples of strict monoidal categories that we
described, every commutative monoid can be thought of as a
strictly symmetric, strict monoidal category.

The strict monoidal categories (N,+, 0), ({1}∗, •, ∅), (P,∧, 1),
(P,∨, 0), and (2,∧, 1) are all strictly symmetric.

In contrast, ({0, 1}∗, •, ∅) (where 0 • 1 , 1 • 0) and both strict
monoidal category structures on KMat are not strictly
symmetric.
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Properties of Strict Monoidal Categories

We conclude this Section with a theorem about strict monoidal
categories that are monoids.

Theorem

Let (M, ⋆, e) be a monoid, thought of as a one-object category. If
M has a strict monoidal category structure (M,□, I), then ⋆ = □,
and the monoid is a commutative monoid. Another way to say this
is that every one-object strict monoidal category is a commutative
monoid.

This theorem states that a set with two monoid structures that
respect each other is a commutative monoid. The theorem goes by
the name Eckmann–Hilton argument.
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Properties of Strict Monoidal Categories

Proof.
First we show that the unit of the monoid is the same as the unit of
the monoidal category.

e = e ⋆ e e is a unit of the monoid

= (I□e) ⋆ (e□I) I is a unit of the monoidal category

= (I ⋆ e)□(e ⋆ I) from bifunctoriality

= I□I e is a unit of the monoid

= I I is a unit of the monoidal category.

□
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Properties of Strict Monoidal Categories

Proof.
By the bifunctoriality of □, we have that

(m ⋆ n)□(m′ ⋆ n′) = (m□m′) ⋆ (n□n′).

Setting n = m′ = e gives

(m ⋆ e)□(e ⋆ n′) = (m□e) ⋆ (e□n′),

which reduces to m□n′ = m ⋆ n′. That is, the two multiplications
are the same. Setting m = n′ = e in the above Equation gives us

(e ⋆ n)□(m′ ⋆ e) = (e□m′) ⋆ (n□e).

which reduces n□m′ = m′ ⋆ n. However, since □ = ⋆ as
operations we get that n ⋆m′ = m′ ⋆ n. □
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Foreshadowing
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Introduction

Many of the examples of combining objects and morphisms
come from a category having a finite product structure.

In general, such structures fail to be strictly associative.

The simplest example is the category of sets with the
Cartesian product.

Given any sets S and T , there is a product S × T .

In general, for any three sets S, T and U, the product is not
associative, i.e., S × (T × U) , (S × T) × U..

The set on the left contains elements of the form ⟨s, ⟨t , u⟩⟩,
while the set on the right contains elements of the form
⟨⟨s, t⟩, u⟩.

Although these sets are not equal, there is an isomorphism
from one set to the other.
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Introduction
Even though finite products in a general category fail to be
strictly associative.
We saw in Chapter 3, that any category A with finite products
entails that for all a, b, and c, there is an ismorphism
a × (b × c) −! (a × b) × c.
This isomorphism is actually a component of a natural
isomorphism from the functor

( ) × (( ) × ( )) : A3 −! A

to the functor

(( ) × ( )) × ( ) : A3 −! A.

We also saw in Chapter 3 that if t is the terminal object in A,
then for every object a, there is an isomorphism a × t −! a.
This isomorphism is a component of a natural isomorphism
from the functor ( ) × t : A −! A to the identity functor
IdA : A −! A.
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Introduction

Furthermore, we showed us that the product structure induces
a braid map br : a × b −! b × a, which is an isomorphism.

This isomorphism is a component of the a natural
isomorphism from the functor ( ) × ( ) to the functor
(( ) × ( )) ◦ br .
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Definitions

Let us formalize all of these notions about a category with a finite
product.

Definition

A Cartesian category (A,×, t) is a category with finite products
(the terminal object, t , is the product over the empty diagram.) The
finite product structure induces the following natural isomorphisms.

A way of reassociating the product: a reassociator natural
isomorphism

α : ( ) × (( ) × ( )) =⇒ (( ) × ( )) × ( ).

This means that for every a, b , and c, there is a component
which is an isomorphism

αa,b ,c : a × (b × c) −! (a × b) × c.
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Definitions

Definition (Continued.)

A way of eliminating the unit on the right: a right unitor
natural isomorphism ρ : ( ) × t =⇒ IdA. This means that for
any a, there is a component which is an isomorphism
ρa : a × t −! a.

A way of eliminating the unit on the left: a left unitor natural
isomorphism λ : t × ( ) =⇒ IdA. This means that for any a,
there is a component which is an isomorphism
λa : t × a −! a.

A way of reordering a product: a braiding natural
isomorphism γ : ( ) × ( ) =⇒ (( ) × ( )) ◦ br. This means
that for every a and b, there is a component which is an
isomorphism γa,b : a × b −! b × a.

These natural isomorphisms all interact and satisfy more axioms.
For pedagogical reasons, we will resist listing these axioms for a
little while.
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Examples
There are many examples of Cartesian categories, some of which
we have already seen.

Example

(Set,×, {∗}), (Top,×, {∗}), and (Manif ,×, {∗}).

We are familiar with the product structure in Set.

The product structures in Top and Manif are less familiar.
One must show that the Cartesian product of topological
spaces has a topological structure, and this topological
structure must conform with the projection functions. In detail,
one must show that if X and Y are topological spaces, then so
is X × Y, and the projections π : X × Y −! X and
π : X × Y −! Y are continuous maps.

One must also show that the product of two manifolds is
locally like Rn and that the projection functions are smooth.

Tthe terminal object is the one-element set.
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Examples

Example

(Cat,×, 1) and (Graph,×, 1).

We saw that Cat has a Cartesian category structure.

We showed how to form the product of two categories.

The unit is the terminal category that has a single object and a
single identity morphism.

We saw that the structure on the category of graphs is very
similar.
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Examples

Example

The categories of most algebraic structures have a Cartesian
category structure.

In general, the product of two algebraic structures is the
product of their underlying sets, and the operations are then
performed pointwise, i.e. on each component.

There is a prominent exception within the algebraic structures
mentioned: the category of fields does not have products.

Given two fields, F1 and F2, one can form the set of ordered
pairs F1 × F2. The pairs (a, b) can be added and multiplied

(a, b)+(a′, b ′) = (a+a′, b+b ′) (a, b)·(a′, b ′) = (a·a′, b ·b ′).

However, there are elements (a, 0), which are not zero, and
yet they do not have inverses. This means that the pairs fail to
be a field. The obvious product in Field does not work.
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Examples

Example

(KFDVect,⊕, 0). The category of finite dimensional K vector
spaces and linear maps has a Cartesian category structure. There
is a plethora of names for this operation: direct sum, product,
and Cartesian product.. Since KFDVect will play such an
important role in this text, we discuss it in detail. If V and W are
finite dimensional vector spaces, then

V ⊕W = {(v ,w) : v ∈ V ,w ∈ W }

has a vector space structure. The vector space operations are
defined as follows:

Addition is pointwise, i.e., (v ,w) + (v′,w′) = (v + v′,w + w′).

Scalar multiplication is pointwise, i.e., c · (v ,w) = (c · v , c ·w).

The zero is (0, 0).

The unit of this product is the trivial vector space 0.
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Examples

The details of showing that (KVect,⊕, 0) is a Cartesian category
will be proven in the upcoming exercises.

Exercise
Show that the obvious projection maps

V V ⊕W
πW //

πVoo W

defined by (v ,w) 7! v and (v ,w) 7! w are linear maps and they
satisfy the universal property of being a product.
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Exercise
Show that for three vector spaces V, W, and X, the vector space
V ⊕ (W ⊕ X) is isomorphic to (V ⊕W) ⊕ X.

Exercise
Show that the trivial vector space 0 acts like a unit, i.e., show that
V ⊕ 0 and 0 ⊕ V are isomorphic to V.

Exercise
Show that V ⊕W is isomorphic to W ⊕ V.
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Here are two important theorems about the direct sum of vector
spaces.

Theorem

For any finite dimensional vector spaces V and W,
dim(V ⊕W) = dim(V) + dim(W).

Theorem

For any short exact sequence

0 // U
T // V

S // W // 0

V is isomorphic to U ⊕W.
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Example

Any preorder category (P,≤) that has finite products has a
Cartesian category structure.

The product is called a meet and denoted ∧.

The unit is the terminal 1 and it satisfies the requirement that
for all p, there is a unique isomorphism from p ∧ 1 to p.

Notice that in contrast to where we discussed partial orders,
for preorders p ∧ (q ∧ r) need not be equal to (p ∧ q) ∧ r.

Special cases of such preorder categories are the categories
of propositions and predicates which we saw in the
min-course on categorical logic. We showed that
(Prop,∧,True), and for all x̄, (Pred(x̄),∧,True) are
Cartesian categories.
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Examples

Example

(CompFunc,×, ∗). We saw that that the category of computable
functions with the multiplication × and the terminal type ∗ is a
Cartesian category.
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Example

The direct sum in KMat has to be reexamined. We saw d that
(KMat,⊕, 0) has a strict monoidal category structure. In fact, it is
an unusual example of a Cartesian category where the ⊕ is strictly
associative. It pays to carefully show that the ⊕ monoidal structure
satisfies the universal property of being a product in KMat. The
object m ⊕ n = m + n is the product of m and n with the projection
given as

m m + n

Im 0m,n


oo

0n,m In

// n
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Example (Continued.)

In order to see that these projections satisfy the universal
properties, consider two morphisms (matrices) Am,p : p −! m and
Bn,p : p −! n as in:

p

Am,p

yy

Bn,p

%%

Am,p

Bn,p


��

m m + nIm 0m,n


oo 0n,m In


// n

The m + n by p matrix with Am,p on top of Bn,p uniquely satisfies
this property.
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Definitions

From duality, we know that whatever we said about the product
and the terminal object also applies to the coproduct and the initial
object.

Definition

A co-Cartesian category or a coproduct category (A,+, i) or
(A,⨿, i) is a category with finite coproducts (the initial object, i, is
the coproduct over the empty diagram.) The finite coproduct
structure induces the following natural isomorphisms:

A way of reassociating the coproduct: a reassociator natural
isomorphism

α : ( ) + (( ) + ( )) =⇒ (( ) + ( )) + ( ).
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Definitions

Definition
A way of eliminating the unit on the right: a right unitor
natural isomorphism ρ : ( ) + i =⇒ IdA.

A way of eliminating the unit on the left: a left unitor natural
isomorphism λ : i + ( ) =⇒ IdA.

A way of reordering a coproduct: a braiding or a cobraiding
natural isomorphism γ : ( ) + ( ) =⇒ (( ) + ( )) ◦ br.

These natural isomorphisms all interact and satisfy more axioms.
We will describe those axioms later.
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There are many examples of co-Cartesian categories. Some of
them we have already seen.

Example

(Set,+, ∅), (Top,+, ∅), and (Manif ,+, ∅). All three categories
have coproduct structures. The empty set, the empty topological
space, and the empty manifold, are the initial objects in their
respective categories. One must show that in the cases of Top
and Manif, the coproduct exists, and the inclusion maps satisfy
the universal properties and are continuous and smooth,
respectfully.
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Example

(Cat,+, 0) and (Graph,+, ∅). The category Cat has a
co-Cartesian category structure. The coproduct of two categories
is their disjoint union. The unit is the empty category 0. The
category of graphs has a similar structure.

Example

(BoolFunc,+, 0). The objects are the natural numbers and the
morphisms from m to n are all the set functions from the set {0, 1}m

to {0, 1}n. The tensor product on objects is addition of natural
numbers. The morphisms is done as follows. Let
f : {0, 1}m −! {0, 1}n and g : {0, 1}m

′

−! {0, 1}n
′

. Then
f + g : {0, 1}m+m′ −! {0, 1}n+n′ is defined by f the first m digits of
the input and by g on the last m′ digits.
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Example

A preorder category (P,≤) with finite coproducts has a
co-Cartesian category structure where the coproduct is called
join and denoted ∨.

The initial object is denoted 0 and for all p there is an
isomorphism p ∨ 0 −! p.

In contrast to a partial order category, for an arbitrary preorder
category, p ∨ (q ∨ r) need not be equal to (p ∨ q) ∨ r.

The categories we met in our mini-course in basic categorical
logic, (Prop,∨,False) and for all x̄ (Pred(x̄),∨,False), are
co-Cartesian categories.
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Exercise

We showed that KMat has a strict monoidal structure and it has a
Cartesian monoidal structure. Show that the product in KMat also
makes it a co-Cartesian category. Use the fact that
KMatop � KMat. To see that the universal property of being a
coproduct is satisfied, consider the following:

m


Im

0n,m


//

Ap,m

%%

m + n

[Ap,mBp,n]

��

n


On,m

Im


oo

Bp,n

yy
p.
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Exercise

We saw that (KVect,⊕, 0) is a Cartesian category. In fact it is also
a co-Cartesian category. Show that the obvious inclusion maps

V
incV // V ⊕W W

incWoo

defined by v 7! (v , 0) and w 7! (0,w) are linear maps and satisfy
the universal properties of a coproduct. The ⊕ operation which is
both a product and a coproduct is called a biproduct.

Notice that some categories, such as
Set,Top,Manif ,Prop,Cat,Par,KMat, and KVect, have
both Cartesian and co-Cartesian category structures.
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Foreshadowing

Chapter 5: Monoidal Categories
Section 5.3 Monoidal Categories

Definitions
Coherence Conditions
The Association Category
The Symmetry Category
Examples
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Introduction

The structures we have seen till now, strict monoidal categories,
Cartesian categories, and co-Cartesian categories, are special
types of a more general structure that we will present here. By
weakening the requirements, we get a notion that is more
applicable (see Important Categorical Idea.)
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Definitions

Definition

A monoidal category (A,⊗, I, α, λ, ρ) has the following structure:

A category A.

A way of combining objects and morphisms: a bifunctor called
the tensor product or the monoidal product
⊗ : A ×A −! A.

A special object I of A called the unit.
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Definitions

Definition
A way of reassociating the monoidal product: a natural
isomorphism called a reassociator

α : ( ) ⊗ (( ) ⊗ ( )) =⇒ (( ) ⊗ ( )) ⊗ ( ).

That is, for every a, b , and c, the component is an
isomorphism

αa,b ,c : a ⊗ (b ⊗ c) −! (a ⊗ b) ⊗ c.
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Definitions

Definition
A way of eliminating the unit on the right: a natural
isomorphism called a right unitor

ρ : ( ) ⊗ I =⇒ IdA.

That is, for any a, the component is an isomorphism

ρa : a ⊗ I −! a.

A way of eliminating the unit on the left: a natural isomorphism
left unitor

λ : I ⊗ ( ) =⇒ IdA.

That is, for any a, the component is an isomorphism

λa : I ⊗ a −! a.
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Definitions

Definition
The following requirements must be satisfied:

The reassociator must cohere with itself: for all objects a, b , c,
and d the following pentagon coherence condition or
Mac Lane’s coherence condition or Stasheff’s coherence
condition
a ⊗ (b ⊗ (c ⊗ d))

ida⊗αb ,c,d
//

αa,b ,c⊗d

��

a ⊗ ((b ⊗ c) ⊗ d)
αa,b⊗c,d

// (a ⊗ (b ⊗ c)) ⊗ d

αa,b ,c⊗idd

��

(a ⊗ b) ⊗ (c ⊗ d) αa⊗b ,c,d
// ((a ⊗ b) ⊗ c) ⊗ d

commutes.

(This is one of the most important diagrams in this class!)
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Definitions

Definition
The reassociator must cohere with the right and left unitors:
for all objects a and b of A, the following triangle coherence
condition

a ⊗ (I ⊗ b)
αa,I,b

//

ida⊗λb &&

(a ⊗ I) ⊗ b

ρa⊗idbxx

a ⊗ b

commutes.
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Definitions

While most of the variations of monoidal categories will be given in
Chapter 7, there is one variation which deals with commutativity
that arises so often that we provide it here.
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Definitions

Definition

A symmetric monoidal category (A,⊗, I, α, λ, ρ, γ) is a monoidal
category (A,⊗, I, α, λ, ρ) with a natural isomorphism called a
braiding that permutes two objects

γ : ⊗ =⇒ ⊗ ◦ br .

That is, for objects a and b in A there is a natural isomorphism

γa,b : a ⊗ b −! b ⊗ a.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 5.3: Monoidal Categories



Definitions

Definition
In addition to being a monoidal category, a symmetric monoidal
category must also satisfy the following conditions:

The braiding must be its own inverse: the symmetry
coherence condition

a ⊗ b
γa,b

// b ⊗ a

γb ,a
zz

a ⊗ b .
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Definitions

Definition
The braiding must cohere with itself and the associator: the
hexagon coherence conditions

(a ⊗ b) ⊗ c
α−1

a,b ,c
//

γa,b⊗Idc

��

a ⊗ (b ⊗ c)
γa,b⊗c

// (b ⊗ c) ⊗ a

α−1
b ,c,a
��

(b ⊗ a) ⊗ c
α−1

b ,a,c

// b ⊗ (a ⊗ c)
idb⊗γa,c

// b ⊗ (c ⊗ a)

a ⊗ (b ⊗ c)
αa,b ,c

//

ida⊗γb ,c

��

(a ⊗ b) ⊗ c
γa⊗b ,c

// c ⊗ (a ⊗ b)

αc,a,b

��

a ⊗ (c ⊗ b) αa,c,b
// (a ⊗ c) ⊗ b

γa,c⊗idb

// (c ⊗ a) ⊗ b .
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Definitions

Definition
The braiding must cohere with the left and right unitors: the
triangle symmetry coherence condition

a ⊗ I
γa,I

//

ρa
""

I ⊗ a

λa||
a.
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Definitions

A monoidal category can be strictly associative and still be a
(non-strictly) symmetric monoidal category.

Definition
A strictly associative symmetric monoidal category is a
symmetric monoidal category where α, λ, and ρ are all identity
maps. In this case the coherence condition shorten to

a ⊗ b ⊗ c

γa,b⊗idc %%

γa,b⊗c
// b ⊗ c ⊗ a a ⊗ b ⊗ c

γa⊗b ,c
//

ida⊗γb ,c &&

c ⊗ a ⊗ b

b ⊗ a ⊗ c
idb⊗γa,c

99

a ⊗ c ⊗ b .
γa,c⊗idb

88
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Examples

Let us explore some examples of monoidal categories.

Example
Every strict monoidal category is a monoidal category where the
natural isomorphisms α, ρ, and λ are identity natural
transformations. Obviously, all the coherence conditions are
satisfied.
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Examples

Example

Every Cartesian category and co-Cartesian category is a
symmetric monoidal category.

In Chapter 3, we showed that products induce reassociators,
unitors, and braidings.

We are left to show that the induced isomorphisms satisfy all
the coherence conditions for a monoidal category.

This is done within the text in three different ways. We leave it
out of the slides because it is rather complex.
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Central Idea

Important Categorical Idea

Cartesian vs. Monoidal.

Although Cartesian categories are a special type of monoidal
category, there could be significant differences between a
Cartesian category and a general monoidal category.

The tensor in a Cartesian category satisfies universal
properties. This means that there are projection functions that
satisfy all the universal properties.

For example, in a Cartesian category, any object a, has a
diagonal map ∆: a −! a × a. In a general monoidal
category, such a morphism need not exist.

Also, in a Cartesian category, the monoidal product is
automatically symmetric, while in a general monoidal category
this is not necessarily true.

This will have profound ramifications in the rest of this course.
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Example

There is a category called the association category, Assoc, that
is the paradigm of monoidal categories. The objects are the
associations of letters. For example, the following are three
associations:

•(••) (•(••))(•(•(••))), •(•(((•)•))•) • .

Each • is a placeholder and only the arrangement of the
parentheses are important. Some of the associations will have the
letter I in some of their positions which will correspond to having a
unit element in that position. For example:

•(I•) (•(I•))(I(•(•I))), •(I(((••)I))•) • .
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Examples

Example (Continued.)
The morphisms in this category are easy to describe: there is
exactly one morphism between any two objects in the category.
This makes the category Assoc a contractible groupoid and a
preorder category. The monoidal structure is also easy to
describe: given associations w and w′, the tensor product is
w ⊗w′ = w •w′. Given f : w −! w′ and g : w′′ −! w3, the tensor
product f ⊗ g is the unique isomorphism w • w′′ −! w′ • w3. The
unit of the monoidal structure is the association I. The uniqueness
of the morphisms gives us the isomorphisms

αw,w′,w′′ : w • (w′ • w) −! (w • w′) • w′.

The uniqueness of the morphisms also ensure that the pentagon
and triangle coherence conditions are satisfied.
We will see in Chapter 6 how (Assoc,⊗, I) is the paradigm
monidal category.
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Example

There is a category called the symmetry category, Sym, that is
the paradigm of symmetric monoidal categories. This category is
built out of the symmetric groups, which we first define. For each
natural number n, there is a symmetric group on n elements or
the n-th symmetric group, written Sn, whose elements are ways of
permuting the first n numbers. These groups are very important in
all of mathematics and physics. A typical element of S6 is

(1, 2, 3, 4, 5, 6) 7−! (3, 4, 1, 6, 5, 2).

This permutation takes 1 to 3, 2 to 4, 3 to 1, etc. Another typical
element is the permutation

(1, 2, 3, 4, 5, 6) 7−! (5, 3, 6, 4, 2, 1).
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Examples

Example (Continued.)

These permutations can be composed by doing the first one and
then the second one. The composition of these two permutations
is the permutation that takes 1 to 3 which further goes to 6, etc.
Here is the composition:

(1, 2, 3, 4, 5, 6) 7−! (6, 4, 5, 1, 2, 3).

There is an identity permutation which does not change anything,
i.e.,

(1, 2, 3, 4, 5, 6) 7−! (1, 2, 3, 4, 5, 6).

Every permutation has an inverse. The inverse of the first
permutation is

(1, 2, 3, 4, 5, 6) 7−! (3, 6, 1, 2, 5, 4).
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Examples

Example (Continued.)

A graphical way of describing these permutations is having a line
from the top number to the number it goes to. The permutations of
the first and second example can be written as

• • • • • •

• • • • • •

• • • • • •

• • • • • •.
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Examples

Example (Continued.)

The composition of the first two examples can be seen as

• • • • • •

• • • • • •

• • • • • •.

Follow the lines from the top to the bottom.
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Example (Continued.)
The identity permutation in S6 can be viewed as

• • • • • •

• • • • • •.

This corresponds to not changing anything. The composition of
any permutation with the identity is the original permutation.
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Example (Continued.)

The inverse of the first example is its diagram turned upside-down:

• • • • • •

• • • • • •.
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Examples

Example (Continued.)
Using these graphical pictures, one can see that every permutation
of the group can be constructed as a combination of small
permutations that only change a number and its neighbor. We
name these small permutations as s1, s2, . . . , sn−1. For S6, these
small permutations graphically look like this:

s1 = • • • • • •

• • • • • •,

s2 = • • • • • •

• • • • • •,

· · · , s5 = • • • • • •

• • • • • •.
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Example (Continued.)

For the groups Sn, the generators s1, s2, . . . , sn−1 satisfy the
following three equations:

sisi = e

sisj = sjsi for |i − j| > 1

sisi+1si = si+1sisi+1

Each of these equations can be understood graphically. We will
show them in the next three slides.
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Example (Continued.)

The meaning of the first equation is that switching the two numbers
and then switching them again is like doing nothing. (or another
way of saying this is that every generator is its own inverse.) This is
the content of the following diagram

• • • • • •

• • • • • •

• • • • • •

=

• • • • • •

• • • • • •.
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Example (Continued.)

The meaning of the second equation says that when the numbers
being switched are more than one apart, then it does not matter in
what order it is done. This corresponds to

• • • • • •

• • • • • •

• • • • • •

=

• • • • • •

• • • • • •

• • • • • •.
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Example (Continued.)

And finally, the third equation says that switching close numbers
has the following property

• • • • • •

• • • • • •

• • • • • •

• • • • • •

=

• • • • • •

• • • • • •

• • • • • •

• • • • • •.

Both diagrams describe the permutation
(1, 2, 3, 4, 5, 6) 7−! (1, 4, 3, 2, 5, 6).
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Example (Continued.)
Now that we have these symmetry groups, let us gather them to
form the category Sym. The objects are the natural numbers and
the morphisms are given as follows

HomSym(m, n) =


Sm : if m = n

∅ : if m , n.

One can envision this category as follows

S0 S1 S2 Sn
∗ ∗ ∗ · · · ∗ · · ·

0 1 2 n
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Example (Continued.)
This category has a symmetric monoidal category structure. The
monoidal product ⊕ on objects is addition, i.e., m ⊕ n = m + n. On
morphisms, f : m −! m and g : n −! n, go to the function
f ⊕ g : m + n −! m + n, where this function acts on each of its
parts. Formally

(f ⊕ g)(i) =


f(i) : if i ≤ m

g(i −m) + m : if i > m.

We can visualize this as

m

f
��

⊕ n
g
��

m ⊕ n.
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Example (Continued.)

In words, the ⊕ does both permutations without interfering with
each other. For example, the monoidal product of the first two
permutations is

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) 7−! (3, 4, 1, 6, 5, 2, 11, 9, 12, 10, 8, 7).

This can be visualized by putting the diagrams side-by-side:

• • • • • •

• • • • • •

• • • • • •

• • • • • •.

It is easy to see that ⊕ is strictly associative.
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Example (Continued.)
The interesting part is the braiding. For every m and n, there is an
element in Sm+n written γm,n : m + n −! n + m, which is defined
as

(1, . . .m,m+1, . . .m+n) 7−! (m+1,m+2, . . . ,m+n, 1, 2, . . . ,m).

Formally, this is

γm,n(p) =


p + m : if p ≤ m

p −m : if p > m.
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Example (Continued.)

For example, if m = 4 and n = 3 then γ4,3 looks like

• • • • • • •

• • • • • • •.
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Example (Continued.)

We are left to show that this braiding satisfies the two triangle
coherence conditions. Given three integers m, n, and q, if we think
of the m strands as one cable, the n strands as another cable, and
the q strands as a third cable, then the two diagrams amount to

• • •

• • •

=

• • •

• • •

• • •

• • •

• • •

=

• • •

• • •

• • •

We will see in Chapter 6 how (Sym,⊕, ∅) is the paradigm
symmetric monidal category.
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Examples

Let us continue with our examples of monoidal categories.

Example

There is a monoidal category structure on KFDVect where the
monoidal product is the tensor product of vector spaces that
corresponds to the Kronecker product of matrices. This operation
on vector spaces will be very important for quantum theory and
quantum computing. The tensor product operation takes two
vector spaces, V and W, and forms V ⊗W. If B = {b1, b2, . . . , bm}

is a basis for V and B′ = {b ′1, b
′
2, . . . , b

′
n} is a basis for W, then the

basis for V ⊗W will consist of vectors of the form

{b ⊗ b ′ : b ∈ B, b ′ ∈ B′}.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 5.3: Monoidal Categories



Examples

Example (Continued.)

A typical element of V ⊗W will be a finite linear combination of
these elements:

c1,1(b1 ⊗ b ′1) + c1,2(b1 ⊗ b ′2) + c1,3(b1 ⊗ b ′3) + · · ·+ cm,n(bm ⊗ b ′n.

The elements must satisfy a bilinearity axiom. This says that the
tensor product respects the addition in the two vector spaces. This
amounts to

(b + b ′) ⊗ b ′′ = (b ⊗ b ′′) + (b ′ ⊗ b ′′)

and similarly,

b ⊗ (b ′ + b ′′) = (b ⊗ b ′) + (b ⊗ b ′′).
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Example (Continued.)

The bifunctor ⊗ on the category KFDVect is also defined on liner
maps. If T : V −! W and T ′ : V ′ −! W ′, then there is a linear
map T ⊗ T ′ : V ⊗ V ′ −! W ⊗W ′. This map is defined as

(T ⊗ T ′)(v ⊗ w) = T(v) ⊗ T ′(w).

The unit of the monoidal category structure is the one dimensional
vector space K. The basis for this vector space is the set {1}. The
basis for V ⊗ K is {b1 ⊗ 1, b2 ⊗ 1, . . . , bm ⊗ 1}.
The braiding is important. While V ⊗W is not equal to W ⊗ V,
there is an isomorphism between the two. Basically the
isomorphism is induced by the map that takes the basis element
b ⊗ b ′ to b ′ ⊗ b. This braiding satisfies all the conditions of a
symmetric monoidal category.
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We saw how the dimension of direct product of vector spaces work
with addition. Here is a theorem about the dimension of the tensor
product of vector spaces.

Theorem
For finite dimensional vector spaces V and W, we have
dim(V ⊗W) = dim(V) · dim(W).

Proof.
A basis for the tensor product is the Cartesian product of the
original basis, i.e.,

|{b ⊗ b ′ : b ∈ B, b ′ ∈ B′}| = |B| · |B′|.

□
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Example

(Rel,⊗, {∗}). The category Rel of sets and relations between
them form a symmetric monoidal category. The value of ⊗ on sets
S and T is S × T. For relation Q : S ̸−! S′ and R : T ̸−! T ′, we
form

Q ⊗ R : S × T ̸−! S′ × T ′

which is defined as

((s, t), (s′, t ′)) ∈ Q ⊗ R if and only if (s, s′) ∈ Q and (t , t ′) ∈ R .

This is also written as

(s, t) ∼ (s′, t ′) if and only if s ∼ s′ and t ∼ t ′.
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Example (Continued.)

Given three sets S, T, and U, the reassociator
αS,T ,U : S ⊗ (T ⊗ U) ̸−! (S ⊗ T) ⊗ U is defined as

((s, (t , u)), ((s, t), u)) ∈ (S ⊗ (T ⊗ U) × (S ⊗ T) ⊗ U)

or
(s, (t , u)) ∼ ((s, t), u).

This reassociator clearly satisfies the pentagon condition.
The unit object is the one-element set {∗} and the right unitor on
the set S is defined as (s, ∗) ∼ s. There is a similar relation for the
left unitor.
The braiding for sets S and T is γS,T : S ⊗ T −! T ⊗ S which is
defined as (s, t) ∼ (t , s). This braiding satisfies the symmetry
condition and the hexagons.
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Endomorphisms of the unit of a monoidal category will be
important. First a theorem.

Theorem

For I, the unit of a monoidal category, we have ρI = λI : I ⊗ I −! I.

Theorem

The endomorphisms of the unit of a monoidal category form a
commutative monoid under composition. This means that for any
pair f : I −! I and g : I −! I, we have that f ◦ g = g ◦ f : I −! I.
Furthermore, we have that f ⊗ g = g ⊗ f : I ⊗ I −! I ⊗ I.
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Sometimes the endomorphisms of the unit have a lot more
structure than just a commutative monoid.

Remark
In the monoidal category of complex vector spaces
(CFDVect,⊗,C), the set of linear maps from C to C is — not only
a commutative monoid but it is — the field of complex numbers. By
linearity, every map f : C −! C is totally determined by the value
f(1) because f(c) = f(c · 1) = c · f(1).
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Example

(Circuit,⊕, ∅).

The category of logical circuits has a monoidal category
structure. The tensor product is the disjoint union. That is,
given two circuits, C with m input wires and n output wires,
and C ′ with m′ input wires and n′ output wires, we can
compose them to form C ⊕ C ′ as in the figure on the next
slide.

This new circuit has m + m′ input wires and n + n′ output
wires.

The unit is the empty circuit with no input wires and no output
wires.

We will see that this category is not a symmetric monoidal
category.
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Example (Continued.)

i1

C

o1

i2 o2
...

...

im on

i1

C ′

o1

i2 o2
...

...

im′ on′

Parallel composition of two circuits.
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When dealing with such a monoidal category, one must be
concerned with a lot of “baggage” like the reassociator, the
units, the coherence conditions, etc.

This is in sharp contrast to a strict monoidal category which
does not have a lot of “baggage.”

We will see in the next chapter that monoidal categories have
a special relationship with strict monoidal categories.

This relationship will help us easily deal with all the “baggage.”
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Chapter 5: Monoidal Categories
Section 5.4 Coherence Theory

Introduction
Motivation
Shapes
Catalan Numbers
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Introduction

Let us spend a few minutes meditating on coherence
conditions. What are they all about?

In order to get an intuition about operations and their axioms,
we return to basic arithmetic. Consider the real numbers and
an operation ⊗ that satisfies the associativity axiom:
a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c. The + and × operations satisfy this
requirement.

If this single axiom is satisfied, we are assured that no matter
how many numbers and no matter how they are associated
(bracketed), there will be a unique final value of the
expression.
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To reiterate, this means that for any numbers a, b , c, d, e, f ,
and g, and any two associations, their values will be equal,
e.g.,

(((a⊗b)⊗(c⊗d))⊗e)⊗(f⊗g) = (a⊗(b⊗c))⊗((d⊗(e⊗f))⊗g).

In such a case, omit the parentheses: a ⊗ b ⊗ c ⊗ d ⊗ e ⊗ f ⊗ g.

In contrast, if the associativity axiom is not satisfied, as with
the − or ÷ operation, then different associations can give
different values.
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Another example in basic arithmetic is commutativity.

We ask if an operation ⊗ satisfies the commutativity axiom
a ⊗ b = b ⊗ a.

If the axiom is satisfied, we are assured that no matter how
many numbers and no matter how they are ordered, there will
be a unique final value. To reiterate, this means that for any
numbers and for any two ordering of the numbers, their values
are equal, e.g.,

c ⊗ f ⊗ a ⊗ b ⊗ g ⊗ d ⊗ e = g ⊗ a ⊗ b ⊗ f ⊗ c ⊗ d ⊗ e

This implies that the order of the elements is irrelevant.
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In contrast, with operations that do not satisfy the
commutativity axiom, such as − and ÷, different orders of the
numbers give different values.
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Now let us return to categories.

If a bifunctor ⊗ satisfies a strict associativity axiom,
a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c, or a strict commutativity axiom,
a ⊗ b = b ⊗ a, then these categories will satisfy the same
properties of basic arithmetic.

However, the universe is not always so pretty, and many
categories and bifunctors do not have strict associativity or
strict commutativity.
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What can we say about monoidal categories when they do not
satisfy strict axioms?

In a monoidal category there are two functors ( ) ⊗ (( ) ⊗ ( ))
and (( ) ⊗ ( )) ⊗ ( ) with a natural isomorphism between
them. In other words, there is an isomorphism
α : a ⊗ (b ⊗ c) −! (a ⊗ b) ⊗ c.

We now ask what about functors that accept more letters and
represent associations. How many natural isomorphisms are
there between

(((a⊗b)⊗(c⊗d))⊗e)⊗(f⊗g) and (a⊗(b⊗c))((d⊗(e⊗f))⊗g)?
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For four letters, there are five ways of associating the letters,
and the pentagon shows us that there are five different
isomorphisms between them.

How many isomorphisms are there from a ⊗ (b ⊗ (c ⊗ d)) to
((a ⊗ b) ⊗ c) ⊗ d?

If we assume that pentagon commutes then there is exactly
one such isomorphism.

We can think of this geometrically as follows. Before we
assume that the pentagon commutes, there is a ring of
isomorphisms. Once we assume the pentagon commutes,
then think of the ring as a filled in disk. In that case, there is a
unique path (map) from any functor to any other.
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What if one has more than four letters?

In order to get a handle on this, let us look at the case where
there are five letters. For five letters, there are 14 ways of
associating the letters. They are partially depicted in the next
slide.

The shape forms a sphere.
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((a(bc))d)e (a((bc)d))e

a((bc)(de))

((ab)(cd))e

((ab)c)(de) a((b(cd))e)

(a(bc))(de) a(((bc)d)e)

(((ab)c)d)e (a(b(cd)))e

·

·

· ·
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In order to see this shape more clearly, let us cut open the
sphere and spread it out as in the next slide.

Notice that the two long curved arrows from the lower-left
corner to the upper right corner are the same map.

This shape is made of 14 vertices and 21 arrows which form
three squares and six pentagons.

The squares are all naturality squares which commute
because α is a natural transformation.

The pentagons are all instances of the Mac Lane pentagon
condition.
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(a(bc))(de)
αa,b ,c⊗Idde

//

αa(bc),d,e

**

((ab)c)(de)

α(ab)c,d,e

��

a((bc)(de))

αa,bc,de

44

ida⊗αbc,d,e

$$

((a(bc))d)e

(αa,b ,c⊗idd)⊗ide

��

a(((bc)d)e)
αa,(bc)d,e

// (a((bc)d))e

αa,bc,d⊗ide
99

a(b(c(de)))

ida⊗αb ,c,de

CC

αa,b ,c(de)

��

ida(idb(αc,d,e))

��

(((ab)c)d)e

a((b(cd))e) αa,b(cd),e
//

ida⊗(αb ,c,d⊗ide)

OO

(a(b(cd)))e

(ida⊗αb ,c,d)⊗ide

OO

%%

a(b((cd)e)
ida⊗αb ,cd,e

::

αa,b ,(cd)e
**

((ab)(cd))e

αab ,c,d⊗ide

CC

(ab)(c(de))
idab⊗αc,d,e

//

αab ,c,de

OO

αab ,c,de

((

(ab)((cd)e)

αab ,cd,e
44
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Here is the main point: if one assumes that α is a natural
transformation, and that the pentagon commutes, then the
entire diagram commutes.

Rather than there being many morphisms from one vertex to
another vertex, the entire diagram commutes and there is
exactly one isomorphism made of α’s between any two
vertices.

This is similar to what we saw with elementary arithmetic: if a
single axiom is satisfied, then there is exactly one value.
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What about six or more letters?

It turns out that for any amount of letters, the figure is made of
pentagons and squares.

If you are working in a situation where there is coherence,
then the pentagons commute.

The squares commute from naturality.

This means that with coherence and naturality, the whole
shape commutes.
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In category theory there is always a goal of there being a
unique isomorphism.

We just proved that there is a unique isomorphism of a certain
type in a monoidal category.

Whenever we define a categorical structure, like an initial
object or a product, we always prove that the object is “unique
up to a unique isomorphism”.

What is this obsession with a unique isomorphism? Why can’t
there be more than one isomorphism between two objects in
the category? Why do we make coherence conditions to
ensure that there is a unique morphism between two vertices?
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As we saw in Important Categorical Idea, there is a hierarchy:

unique.

unique up to a unique isomorphism.

unique up to an isomorphism.

When two structures are isomorphic, it shows that they have the
same structure. The isomorphisms are ways of showing that they
are the same structure. However, when there is a unique
isomorphism, then there is a unique way of reordering so that the
two structures are the same.
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A simple example is in order. Consider the three graphs

•

• •

•

• •

•

• •.

The graph on the left has three vertices and 3! = 6
isomorphisms from it to itself.

An isomorphism of the middle graph to itself must map the
two bottom vertices to themselves or each other. There are
only two maps that do this.

In contrast, the graph on the right has exactly one (the trivial
identity) isomorphism from it to itself. This makes the
definition of the graph on the right more unique, since one
cannot reshuffle the objects in a non-trivial way.
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Mac Lane’s pentagon condition is the beginning of a branch of
category theory called coherence theory.

In arithmetic and algebra, we study how different operations
relate to each other. For example, the rule
x · (y + z) = (x · y) + (x · z) says that the multiplication
operation distributes over the addition operation.

In category theory we go one level higher and study how
different operations, which are represented by functors, relate
to each other with natural transformations.

With arithmetic and algebra, we are interested in determining
if there is a single unique value.

With coherence theory, we are concerned with determining
the relationship between instances of the functors.
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We study how these natural transformations “cohere” with
themselves and with each other.

In Mac Lane’s pentagon condition, we see what happens
when the reassociator coheres with itself.

After we introduce functors between monoidal categories we
will describe certain coherence theorems that explain
properties of monoidal categories, and the relationship of
general monoidal categories to strict monoidal categories.

Since coherence theory deals with the relationship of
morphisms between operations, as opposed to relationships
between operations, it is sometimes called
higher-dimensional algebra.

Later, when discussing higher category theory, we will meet
even higher coherence conditions.
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In order to better understand coherence theory, we examine
certain shapes or finite categories with the operations and the
morphisms between them.

The objects of the category correspond to the associations
and the morphisms correspond to the reassociations.

There is a sequence of such categories denoted
A1,A2, . . . ,An, . . . where each one is called an
associahedron (which is similar to the word “polyhedron,” but
related to the word “association”) and together they are called
associahedra.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 5.4: Coherence Theory



Shapes

In detail, the objects correspond to associations written as
functors and the morphisms correspond to reassociations
written as natural isomorphisms. Since they are
isomorphisms, the categories are, in fact, groupoids.
Here are the associahedra:

A1. For one letter, there is exactly one object: a.
A2. For two letters there is exactly one object: a ⊗ b.
A3. For three letters, there are two ways of associating them
and an isomorphism between them:

a ⊗ (b ⊗ c) −! (a ⊗ b) ⊗ c.

A4. For four letters there are five different ways of associating
them and there are five instances of isomorphism. This is
depicted in the Mac Lane coherence condition . Notice that the
pentagon is the same shape as a two-dimensional circle.
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Some more associahedra:

A5. For five letters, we saw diagrams here and here. Notice
that this is a three-dimensional sphere.
An. What about for six or more letters? The shapes get too
complicated to draw, but mathematicians know a lot of about
them. For n letters there are n − 1 monoidal products between
the letters and there are

Cn−1 =

(
2(n − 1)

n − 1

)
n

=
(2(n − 1))!
(n)!(n − 1)!

ways of associating or bracketing the letters. These numbers
are called the Catalan numbers. The first few Catalan
numbers are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796.
The fact that the number of bracketings is equal to the Catalan
numbers is left for the end of this Section. For n letters, the
shape of the whole category is an n − 2 dimensional sphere.

The main point for all the associahedra is that they are made
of commuting naturality squares and Mac Lane pentagons.
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What about commutativity? What shapes are formed if one
looks at letters which can be permuted?

Let us assume for a moment that we are dealing with strictly
associative monoidal structure so we do not have to worry
about parentheses.
We will form categories (again groupoids) P1,P3,P3, . . . each
called a permutohedron and together are called the
permutahedra which describe the permutations of the
monoidal product.

P1. For one letter, there is only one way of combining it: a.
P2. For two letters, there are two ways of combining them with
a braiding between them: ab −! ba.
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Some more permutahedra:
P3. For three letters, there are 3! = 6 ways of combining them.
Some of the morphisms in P3 looks like this:

a ⊗ b ⊗ c
ida⊗γb ,c

//

γa,b⊗idc

��
γa,b⊗c

))

a ⊗ c ⊗ b
γa,c⊗idb

//

γa,c⊗b

))

c ⊗ a ⊗ b

idc⊗γa,b

��

b ⊗ a ⊗ c
idb⊗γa,c

// b ⊗ c ⊗ a
γb ,c⊗ida

// c ⊗ b ⊗ a.

The two triangles commute because of the coherence
conditions, and the middle quadrilateral commutes out of
naturality.
Pn. For n > 3 letters, the categories get too complicated to
draw. The shapes consist of n! vertices. These shapes are
made out of naturality squares and hexagons.
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There are categories that take into account associativity and
commutativity. We denote the shapes as AP1,AP2,AP3, . . . where
each APn is called a permuto-associahedron and the collection
is called the permuto-associahedra.

AP1. For one letter, there is only one vertex: a.

AP2. For two letters, there are two ways of ordering them with
a braiding between them ab −! ba.

AP3. For three letters there are 6 permutations and for each
permutation, there are 2 ways of associating. This gives 12
objects and is partially depicted on the next slide:
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a(bc) α //

γa,bc

''

id⊗γ

{{

(ab)c
γ⊗id

// (ba)c
α−1

$$

a(cb)

α

��

γa,cb

''

b(ac)

id⊗γ
��

(ac)b

γ⊗id
��

b(ca)

α

��

(ca)b
α−1

##

(bc)a

γ⊗id
zz

c(ab)
id⊗γ

// c(ba) α
// (cb)a.
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This diagram commutes because the middle rectangle is a
naturality square. The other two hexagons are both instances ofthe
coherence condition.

APn. For n > 3 letters, the shapes get too big and complicated
to draw. How many objects are there is in APn? There are n!
ways of ordering them, and for each ordering, there are Cn−1

bracketings. This gives us
(2n − 2)!
(n − 1)! objects. The first few are

1, 2, 12, 120, 1680, 30240, 665280, 17297280.
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In Chapter 8 we will see that each of the collections of
associahedra, permutahedra, and permuto-associahedra forms a
categorical structure called an operad. We will meet these ideas
again and see more ramifications of the coherence conditions.
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In the book, the end of the Section proves the following.

Theorem

The number of legal bracketings of n letters is the n − 1 Catalan
number.

Its worth looking at the proof.
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Chapter 5: Monoidal Categories
Section 5.5 String Diagrams
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Introduction

String diagrams are ways of describing the flow of morphisms
within a category. We will introduce the concepts here and then
build on them throughout the rest of the text. As the categorical
constructions get more and more sophisticated and complicated,
the string diagrams will start having all types of “bells and whistles.”
We will meet many of these extra features in Chapter 7.
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Introduction

There is no consistency within the literature as to what direction
the string diagrams should go.

There are those inspired by physicists who have their
diagrams go from bottom to top, similar to the Feynmen
diagrams.

Some authors have their diagrams go from top to bottom. This
seems more natural as we read from top to bottom. We will
sometimes follow this convention when talking about braids
and tangles, which we will meet in Chapter 7.

Many researchers draw their diagrams from left to right. This
saves space and is similar to the way classical and quantum
circuits are drawn.

While string diagrams are important and helpful, our presentation
will not be done exclusively with string diagrams. Alex Heller used
to quip “A clear sentence is worth a thousand pictures.”
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Since we began our journey, we have described an object in a
category as a node a and morphism from one node to another as

an arrow a f // b . String diagrams invert this convention. When
discussing string diagrams, an object in a category corresponds to
a line and the morphisms correspond to a box on the line that
changes the line. So, the object a corresponds to

a

and a morphism f : a −! b corresponds to

a
f

b
.

At times we stress the direction or orientation of an line by making
the line into an arrow.

a
f

b//
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Composition of f : a −! b with g : b −! c is described as

a
f

b g c or a // f
b // g c//

When there are arrows, one can describe a morphism going in the
opposite direction, e.g., f ′ : b −! a as the string diagram

f ′
aoo b

.

For example, the dual of a linear transformation T∗ : W∗ −! V∗ is
described by

T∗
V∗oo W∗

.
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String diagrams get more interesting when dealing with monoidal
categories. The morphism f : a ⊗ b ⊗ c −! x ⊗ y is drawn as

a

b
f

x

y

c

When the domain of a morphism is the unit of a monoidal category,
such as f : I −! x ⊗ y ⊗ z, rather than draw it as

I
f

x
y

z

we draw it as

f

x
y

z
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Similarly, a morphism f : a ⊗ b −! I is drawn as

a

f

b

Of course a f : I −! I will be written as

f
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Basic String Diagrams

In the event where the name of the morphism is not important, we
draw the morphisms x ⊗ y −! I and I −! x ⊗ y as

y

x

y.

x
and
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String Diagrams

We are not only interested in string diagrams for the tensor product
of objects. We form string diagrams for the tensor product of
morphisms. The tensor product of f : a −! b and g : c −! d is

a
f

b

c g d

.
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String Diagrams
The interchange law (see Important Categorical Idea) should be
viewed with a string diagram. It says, that four maps f : a −! a′,
g : b −! b ′, f ′ : a′ −! a′′, and g′ : b ′ −! b ′′, as

a
f

a′
f ′

a′′

b g b′ g′ b′′.

can be correctly viewed in two different ways:

a
f

a′
f ′

a′′

b g b′ g′ b′′.

or as a
f

a′
f ′

a′′

b g b′ g′ b′′

On the left is a sequential process of parallel processes, and on
the right is a parallel process of sequential processes.
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String Diagrams

The triangle identities for an adjunction can be drawn as

B

B

A

A

A

A

B

B
R

η

ε

=

L

η

ε

=

.
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String Diagrams

The Theorem about that the endomorphisms of the unit of a
monoidal category says that they are a commutative monoid. We
can draw this as follows where the unit I and object I ⊗ I are
depicted as the empty domain.

f

g

=

f

g

= f g =

f

g

=

f

g

= fg

.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 5.5: String Diagrams



String Diagrams

We can use these string diagrams to visualize the coherence
conditions of a monoidal category. Let us consider a ⊗ b as two
strings that are close to each other. In contrast, (a ⊗ b) ⊗ c has a
and b as close strings and c a further string. In this way, the
reassociation α can be seen as a way of showing how strings
change distances.

c
b

a
a(bc)

c.

b
a

(ab)c
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String Diagrams

The pentagon coherence condition can then be viewed as saying
the following two string diagrams are equal

d
c

b

a

a(b(cd))

d

c

b
a

((ab)c)d

=

d
c

b

a

a(b(cd))

d.

c

b
a

((ab)c)d

a((bc)d) (a(bc))d (ab)(cd)

We will meet many more string diagrams in the coming pages.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 5.5: String Diagrams



Lecture Slides

Mini-course:

Advanced Linear Algebra

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 5.5: String Diagrams



Foreshadowing

Chapter 5: Monoidal Categories
Section 5.6: Mini-course: Advanced Linear Algebra

Hilbert Spaces
Operators on Hilbert Spaces
Eigenvalues and Eigenvectors

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 5.6: Mini-course: Advanced Linear Algebra



Introduction

Here we go further with our study of linear algebra. There are
many advanced parts of linear algebra, but we focus on what we
need. In particular, the material we learn here will be central for
our mini-courses on basic quantum theory, quantum computing,
and for the rest of the text.
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Introduction

Let us summarize what we know from our mini-course on
basic linear algebra.

The category KVect has K vector spaces as objects and
linear maps as morphisms.

We are mostly going to focus on the subcategory of finite
dimensional K-vector spaces KFDVect.

Earlier in this chapter, we saw that KFDVect has two distinct
monoidal category structures: the Cartesian category
structure (KFDVect,⊕, 0) called the direct product, and the
monoidal category structure (KFDVect,⊗,K) called the
tensor product.

With every new notion, we will inquire how it respects these
monoidal structures.
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Introduction

In this section we will focus our ideas and only discuss vector
spaces over the complex numbers, C, rather then over an arbitrary
field K. So, we will be looking at the category CVect and
CFDVect. We also look at complex vector spaces with more
structure called Hilbert spaces.
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Hilbert Spaces

In order to arrive at the definition of a Hilbert space, we must ramp
up our knowledge of complex numbers and complex matrices.

Definition
If c = a + bi is a complex number, then the complex conjugate of
c is c = a − bi. This defines a functor ( ) : C −! C. Notice the
complex conjugate operation is idempotent: c = c and that if c is a
real number (i.e., c = a + 0i,) then c = c, i.e., the following
commutes:

C
( )

// C

R.
O/

``

/ �

??
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Hilbert Spaces

Definition
If A is a matrix with complex entries, then we define the
conjugation operation, which we denote as A, to be the complex
matrix whose every entry is the complex conjugate of the original.
Formally,

A [i, j] = A [i, j].

This is a functor ( ) : CMat −! CMat. Notice that conjugation is

idempotent: A = A and if A has only real entries, then A = A ,
i.e., the following commutes:

CMat
( )

// CMat

RMat.
S3

ee

+ �

99
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Hilbert Spaces

Definition
If A is a matrix (with complex entries), then we define the
transpose operation, denoted as AT , to be the complex matrix
whose entries are flipped across the main diagonal of the original
matrix. Formally,

AT [i, j] = A [j, i].

This is a functor ( )T : CMat −! CMatop . Notice that the
transpose operation is idempotent: (AT )T = A.
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Hilbert Spaces

Definition
We can combine the complex conjugation and the transpose to get
the adjoint or dagger operation . If A is a matrix with complex
entries, then A† = A

T
= AT . Formally, A†[i, j] = A [j, i]. In terms of

categories, the fact that conjugation and transpose are idempotent
means that they are both isomorphic functors. The
( )† : CMat −! CMatop functor is defined by composition as

CMat
( )

//

T
��

†

))

CMat

T
��

CMatop
( )

// CMat.op

Notice that dagger is idempotent: (A†)† = A and hence an
isomorphism. If A has only real entries, then A† = AT .
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Hilbert Spaces

Definition
The following commutative diagram expresses the relationship of
real and complex matrices with the † operation

CMat
†

// CMatop

RMat T
//

?�

OO

RMatop .
?�

OO

If A is an n by n matrix, then the trace of A is the sum of the
diagonal elements. That is,

Tr(A) =
n∑

i=1

A [i, i].

This is a functor Tr : Cn×n −! C. In particular, the Trace of the
identity matrix is equal to the dimension of the identity matrix.
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Hilbert Spaces

Exercise
Show that complex conjugation respects complex addition and
multiplication, i.e,

c1 + c2 = c1 + c2 and c1 · c2 = c1 · c2.

Exercise

Prove the following properties about conjugation, dagger, and trace.

Operation Conjugation Dagger Trace

Matrix ad A + B = A + B (A + B)† = A† + B† Tr(A + B) = TrA + TrB

Scalar mlt c · A = c · A (c · A)† = c · A† Tr(c · A) = c · Tr(A)

Matrix mlt A · B = A · B (A · B)† = B† · A† Tr(A · B) = Tr(B · A)

Direct sm A ⊕ B = A ⊕ B (A ⊕ B)† = A† ⊕ B† Tr(A ⊕ B) = TrA + TrB

Kronecker A ⊗ B = A ⊗ B (A ⊗ B)† = A† ⊗ B† Tr(A ⊗ B) = TrA · TrB
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Hilbert Spaces

Often we need the ability to compare vectors in a complex vector
space. That is, we want a function that accepts two vectors and
outputs a complex number telling us how they relate. A Hilbert
space is a complex vector space with a comparing function that
satisfies certain properties.

Definition

An inner product space is a pair (V , ⟨ , ⟩) where

V is a vector space, and

⟨ , ⟩ : V × V −! C is a function called an inner product or a
Hermitian inner product which is used to compare vectors.
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Hilbert Spaces

Definition (Continued.)

The inner product satisfies the following requirements:

A vector measured with itself is non-negative: for all v in V,
⟨v , v⟩ is a real number, ⟨v , v⟩ ≥ 0, and furthermore ⟨v , v⟩ = 0
if and only if v = 0.

The inner product respects addition in each variable :

⟨v+v′,w⟩ = ⟨v ,w⟩+⟨v′,w⟩ and ⟨v ,w+w′⟩ = ⟨v ,w⟩+⟨v ,w′⟩.

The inner product is linear with scalar multiplication in the first
variable and anti-linear with the second variable:

⟨c · v ,w⟩ = c⟨v ,w⟩ and ⟨v , c · w⟩ = c⟨v ,w⟩.

The inner product is not symmetric, but skew-symmetric:

⟨v ,w⟩ = ⟨w, v⟩.
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Hilbert Spaces

Example

Some examples of complex inner product spaces:

Cn. The inner product is given as ⟨v ,w⟩ = v†w.

Cm×n. The inner product is given as ⟨A ,B⟩ = Tr(A†B).

Func(N,C). The inner product is given as
⟨f , g⟩ =

∑∞
i=0 f(i)g(i).

Func([a, b],C) where [a, b] ⊆ R. The inner product is given
as ⟨f , g⟩ =

∫ b
a f(x)g(x)dx (when the integral exists.)
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Hilbert Spaces

We use the inner product to describe relationships between two
vectors in a vector space. Two vectors v and w are called
orthogonal if ⟨v ,w⟩ = 0.
The norm is a way of describing the length of a vector.

Definition
For a vector in a complex inner product space, the norm of a
vector is |v | =

√
⟨v , v⟩.

Example

For Cn, if v = [x1, x2, . . . , xn]
T , then |v | =

√
x2

1 + x2
2 + · · ·+ x2

n .
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Hilbert Spaces

Exercise
Show that the norm satisfies the following properties: for all v and
w in V and for c ∈ C

Norm is nondegenerate: |v | > 0 if v , 0 and |0| = 0.

Norm satisfies the triangle inequality: |v + w | ≤ |v |+ |w |.

Norm respects the scalar multiplication: |c · v | = |c | · |v |.
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Hilbert Spaces

With the notion of a norm, we can define special types of linear
maps.

Definition
Let V and W be complex inner product space with norms | |V and
| |W respectively. A linear map T : V −! W is bounded if T does
not stretch or shrink a vector too much. In detail, for T, there is a
constant rT > 0 ∈ R that depends on T, such that for all v ∈ V we
have

|T(v)|W ≤ rT |v |v .

We will not be very bothered with bounded linear maps because
we will mostly deal with finite dimensional vector spaces and linear
maps between them are always bounded.
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Hilbert Spaces

With the notion of inner product and a norm, we can define special
types of bases of a vector space.

Definition
A basis B = {b1, b2, b3, . . .} is called

orthogonal if any two different vectors in the basis are
orthogonal, that is, for any i , j, we have ⟨bi , bj⟩ = 0.

normal if the norm of every vector in the basis is 1, that is, for
all i, ⟨bi , bi⟩ = 1.

orthonormal if it is both orthogonal and normal, that is, for all
i and j, ⟨bi , bj⟩ = δi,j where δi,j = 1 if i = j and 0 if i , j. The
function δi,j is called the Kronecker delta.
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Hilbert Spaces

With a norm, we can define a distance function. The intuition is
that d(v ,w) is the length between the end of vector v and the end
of vector w.:

Definition

Let (V , ⟨ , ⟩) be a complex inner product space. We define a
distance function

d( , ) : V × V −! R

where
d(v1, v2) = |v1 − v2| =

√
⟨v1 − v2, v1 − v2⟩.
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Hilbert Spaces

Exercise
Show that the distance function has the following properties for all
v ,w, x ∈ V:

Distance is nondegenerate: d(v ,w) > 0 if v , w and
d(v , v) = 0.

Distance satisfies the triangle inequality:
d(v , x) ≤ d(v ,w) + d(w, x).

Distance is symmetric: d(v ,w) = d(w, v).
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Hilbert Spaces
Let us use the inner product to describe vectors in a vector space.
Let V be a finite dimensional orthonormal basis
B = {b1, b2, b3, . . . , bn}. Consider an arbitrary element
v = k1b1 + k2b2 + · · ·+ knbn. The inner product of v with an
element of the basis is

⟨k1b1 + k2b2 + · · ·+ knbn, bi⟩

which by linearity reduces to

⟨k1b1, bi⟩+ ⟨k2b2, bi⟩+ · · ·+ ⟨knbn, bi⟩.

By orthonormality, all but one of the terms are 0, and the entire
expression is ⟨kibi , bi⟩ = ki . This means that when we compare v
with bi we get the scalar multiple in the bi direction. This fact can
be used to express v as

v = ⟨v , b1⟩+ ⟨v , b2⟩+ · · ·+ ⟨v , bn⟩ = Σi⟨v , bi⟩

which will be very helpful.
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Hilbert Spaces

We need the notion of a sequence of vectors getting closer and
closer together.

Definition

Let (V , ⟨ , ⟩) be an inner product space. With the norm and a
distance function we can go on to define special sequences. A
Cauchy sequence is a sequence of vectors v0, v1, v2, . . . such that
for every ϵ > 0, there exists an N0 ∈ N with the property that

for all m, n ≥ N0, d(vm, vn) ≤ ϵ.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 5.6: Mini-course: Advanced Linear Algebra



Hilbert Spaces

What happens when we take a limit of a Cauchy sequence?

Definition
A complex inner product space is called complete if for any
Cauchy sequence of vectors v0, v1, v2, . . ., there exists a vector
v̂ ∈ V such that

limn!∞|vn − v̂ | = 0.

The intuition behind this is that a vector space with an inner
product is complete if any sequence of vectors that gets closer and
closer will eventually converge to a point.
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Hilbert Spaces

Definition

A Hilbert space is a complex inner product space that is complete.
The category of Hilbert spaces and linear bounded maps between
them is denoted Hilb. The central focus will be the subcategory of
finite dimensional Hilbert spaces and (bounded) linear maps
between them denoted FDHilb.

Completeness might seem like an overly complicated (calculus)
type of notion. Fear not! All the inner product spaces that we will
meet will be complete and hence will be Hilbert spaces. In
particular, every inner product on a finite dimensional complex
vector space is automatically complete, hence every
finite-dimensional complex vector space with an inner product is
automatically a Hilbert space.
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Hilbert Spaces

There is an obvious inclusion functor from FDHilb to Hilb and
there are also obvious forgetful functors from categories of Hilbert
spaces to categories of complex vector spaces. This can be
summarized by the following commutative diagram:

CVect Hilb
Uoooo

CFDVect
?�

OO

FDHilb.U
oooo

?�

OO
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Hilbert Spaces

The notion of direct product and tensor product of vector spaces
extends to a direct product and tensor product of Hilbert spaces.
Let (V , ⟨ , ⟩V) and (W , ⟨ , ⟩W ) be two Hilbert spaces. The direct
product of the Hilbert spaces is (V ⊕W , ⟨ , ⟩V⊕W ) where the inner
product is defined as

⟨(v ,w), (v′,w′)⟩V⊕W = ⟨v , v′⟩V + ⟨w,w′⟩W .

The tensor product of the Hilbert spaces is a completion of the
space generated by (V ⊗W , ⟨ , ⟩V⊗W ) where the inner product is
defined as

⟨(v ⊗ w), (v′ ⊗ w′)⟩V⊗W = ⟨v , v′⟩V · ⟨w,w′⟩W .
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Hilbert Spaces

For the most part, we will work with finite dimensional Hilbert
spaces and will not require this completion. It can be shown that
these functions satisfy all the requirements of being an inner
product space. Furthermore, the completeness of each of the
inner product operators ensures that the combined inner products
are also complete. Thus we have shown that the category of
Hilbert spaces have two monoidal category structures (Hilb,⊕, 0)
and (Hilb,⊗,C), which we call the direct product and the tensor
product, respectively. Similarly, there are monoidal category
structures (FDHilb,⊕, 0) and (FDHilb,⊗,C).
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Operators on Hilbert Spaces

An operator on a Hilbert space is a linear map in Hilb (FDHilb)
from a Hilbert space to itself. We are interested in two special
types of operators within the category: Hermitian operators and
unitary operators.
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Operators on Hilbert Spaces

First we take a brief detour and deal with matrices.

Definition
A real n by n matrix A is

symmetric if AT = A, and

orthogonal if AT = A−1, that is AT · A = Idn = A · AT .

A matrix is orthogonal if all its rows are orthogonal to each other
(and each row is of norm 1) and all its columns are orthogonal to
each other (and each column is of norm 1). By multiplying A · AT

we see all the rows multiplied with each other. By multiplying
AT · A we see all the columns multiplied with each other. If both
results are the identity, then the matrix is orthogonal (in fact it is
orthonormal). A unitary matrix is the complex version of this.
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Operators on Hilbert Spaces

Definition
A complex n by n matrix A is

Hermitian if A† = A, and

unitary if A† = A−1 that is A† · A = Idn = A · A†.
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Operators on Hilbert Spaces

How do the matrix operations respect these sets of matrices?

Theorem
The set of Hermitian matrices is closed under matrix addition,
direct sum, and Kronecker product. In general, the set of Hermitian
matrices is not closed under scalar multiplication and matrix
multiplication.
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Operators on Hilbert Spaces

Proof.
Matrix addition. If A and B are both Hermitian, then
(A + B)† = A† + B† = A + B is also Hermitian.

Scalar multiplication. If A is Hermitian and c is an arbitrary
complex number, then (c · A)† = c · A† = c · A , c · A . So it is
not closed.

Matrix multiplication. If A and B are both Hermitian, then

(A · B)† = B† · A† = B · A , A · B .

So it is not closed.

Direct sum. If A and B are both Hermitian, then
(A ⊕ B)† = A† ⊕ B† = A ⊕ B.

Kronecker product. If A and B are both Hermitian, then
(A ⊗ B)† = A† ⊗ B† = A ⊗ B.

□
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Operators on Hilbert Spaces

Theorem
The set of unitary matrices is closed under matrix multiplication,
direct sum, and Kronecker product. In general, the set of unitary
matrices is not closed under matrix addition and scalar
multiplication.
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Operators on Hilbert Spaces

Proof.
Matrix addition. If A and B are both unitary, then

(A+B)†·(A+B) = (A†+B†)·(A+B) = A†A+A†B+B†A+B†B

= Id + A†B + B†A + Id.

This, in general, is not equal to the identity. So it is not closed
under this operation.

Scalar multiplication. If A is unitary and c is an arbitrary
complex number, then
(c · A)† · (c · A) = c · A† · (c · A) = c · c · A† · A = c · cId , Id.
So it is not closed.

Matrix multiplication. If A and B are both unitary, then

(A · B)† · (A · B) = B† · A† · A · B = B† · Id · B = B† · B = Id.

So it is closed.

□
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Operators on Hilbert Spaces

Proof.
Direct sum. If A and B are both unitary, then

(A⊕B)†·(A⊕B) = (A†⊕B†)·(A⊕B) = (A†A)⊕(B†B) = Id⊕Id.

So it is closed.

Kronecker product. If A and B are both unitary, then

(A⊗B)†·(A⊗B) = (A†⊗B†)·(A⊗B) = (A†A)⊗(B†B) = Id⊗Id.

So it is closed.

□
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Operators on Hilbert Spaces

Definition

Since unitary (orthogonal) matrices are closed under matrix
multiplication, and the identity matrix is unitary (and orthogonal),
the collection of unitary (and orthogonal) matrices form a
subcategory of matrices which we denote as UMat (OMat).

In contrast, Hermitian and symmetric matrices are not closed
under matrix multiplication and do not form a subcategory of
matrices. We symbolize the collection of Hermitian and symmetric
matrices as collections of arrows {Hermitian} and {symmetric}
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Operators on Hilbert Spaces

Definition

OMat� _

��

� � // UMat_�

��

RMat �
�

// CMat

{symmetric} �
�

//
� ?

OO

{Hermitian.}
?�

OO

Since unitary matrices are closed under direct product and tensor
product, they form strict monoidal category structures:
(UMat,⊕, 0) and (UMat,⊗, 1).
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Operators on Hilbert Spaces

Let us move the discussion from matrices to operators.

Definition

Let V be a Hilbert space and let T : V −! V be a bounded linear
map. An adjoint or dagger of T is a unique function T† : V −! V
that satisfies the following equation for all v ,w ∈ V:

⟨T(v),w⟩ = ⟨v ,T†(w)⟩.

(The reader should see a resemblance of this definition to the
definition of adjoint functors. In fact, adjoint functors got their name
because they are similar to an adjoint linear map.)
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Operators on Hilbert Spaces

Exercise

Prove that the adjoint linear map satisfies the following properties
with respect to operations on linear transformations

Operation Dagger

Addition (T + T ′)† = T† + T ′†

Scalar mult. (c · T)† = c · T†

Composition (T ◦ T ′)† = T ′† ◦ T†

Direct sum (T ⊕ T ′)† = T† ⊕ T ′†

Tensor product (T ⊗ T ′)† = T† ⊗ T ′†
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Operators on Hilbert Spaces

The adjoint is used to define special types of operators.

Definition

A bounded linear operator T : V −! V is

Hermitain or self-adjoint if it is its own adjoint, i.e., T† = T.

unitary if its adjoint is its inverse, i.e, T† = T−1. That is,
T† ◦ T = IdV = T ◦ T†.

Notice that a unitary operator is, by definition, invertible.
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Operators on Hilbert Spaces

Theorem
T : V −! V is Hermitian if and only if ⟨Tv ,w⟩ = ⟨v ,Tw⟩.

Proof.

(=⇒) Since T† = T .
(⇐=) By the uniqueness of the adjoint. □
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Operators on Hilbert Spaces

Theorem

If T : V −! V is a unitary operator, then it preserves norms. That
is, |v | = |Tv |.

Proof.

|v | =
√
⟨v , v⟩ by definition of norm.

=
√
⟨v , I(v)⟩ I is the identity operator

=
√
⟨v ,T†Tv⟩ because T†T = I

=
√
⟨Tv ,Tv⟩ by definition of adjoint

= |Tv | by definition of norm.

□
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Operators on Hilbert Spaces

Exercise
Show that unitary operators are closed under composition, direct
product, and tensor product.
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Operators on Hilbert Spaces

Definition

Since unitary operators are closed under composition, and identity
morphisms are unitary, the collection of Hilbert spaces and unitary
operators form a subcategory UHilb of Hilb. Similarly, one can
talk about the subcategory of finite dimensional Hilbert spaces and
unitary operators UFDHilb.

Since all unitary operators are invertible, UHilb and UFDHilb
are actually groupoids. There are inclusion functors from UHilb

to Hilb and from UFDHilb to FDHilb. Since unitary matrices
are closed under direct sum and tensor product, there are
monoidal category structures (UHilb,⊕, 0), (UFDHilb,⊕, 0),
(UHilb,⊗,C), and (UFDHilb,⊗,C).
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Operators on Hilbert Spaces

Let us relate Hermitian and unitary matrices with Hermitian and
unitary linear operators.

Theorem

If A is a Hermitain matrix, then TA is Hermitian operator.

Let V be a finite dimensional Hilbert space with a basis B and
a Hermitian operator T : V −! V. Then there is a Hermitian
matrix A such that for all v in V, T(v) = Av.

If A is a unitary matrix, then TA is a unitary operator.

Let V be a finite dimensional Hilbert space with a basis B and
a unitary operator T : V −! V. Then there is a unitary matrix
A such that for all v in V, T(v) = Av.

With the last two statement of this theorem, we can prove that
there is an equivalence of categories between UMat and
UFDHilb.
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Operators on Hilbert Spaces

Let us summarize all the functors that we have been dealing with
relating sets, vector spaces, matrices, and Hilbert spaces.

Set

F
''

⊥ CVect

U

gg Hilb
Uoooo UHilb_?

oo

FinSet
F //

?�

OO

CFDVect
?�

OO

FDHilb
Uoooo ?�

OO

UFDHilb
?�

OO

_?
oo

CMat
?�

≃

OO

UMat._?
oo

?�

≃

OO
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Eigenvalues and Eigenvectors

In this section we deal with linear maps from a complex vector
space to itself. Sometimes such operators only change the
magnitude of a vector and leave the direction fixed. That is, the
operator only changes the vector by a scalar multiple. Those
vectors are almost a fixed point of the operator. We will see that
such vectors and the amount that they are changed by the
operators are very important for our study of such operators.

Definition
For a linear map T : V −! V, if there is a v ∈ V and a λ , 0 in C
such that

T(v) = λ · v

then v is called an eigenvector of T and λ is called the eigenvalue
of v. (The word eigen is from the German “own” or “self.”)
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Eigenvalues and Eigenvectors
For every λ ∈ C, there is an operator λI : V −! V that is defined
for v ∈ V as λI(v) = λ · v. It is not hard to see that λI is a linear
map. Since the subtraction of two operators is still an operator, for
any operator T : V −! V , we have that T − λI is a linear map and
is defined as (T − λI)(v) = T(v) − λI(v) = T(v) − λ · v. For every
eigenvalue λ, T − λI is a linear map and its kernel consists of those
vectors that are eigenvectors for λ

Vλ = {v ∈ V : T(v) = λ · v} ⊆ V

and is called the eigenspace of T belonging to λ. If V is a vector
space of functions, then an eigenvector will be called an
“eigenfunction.” If a basis consists of eigenvectors for some
operator, then the basis is called an eigenbasis.
From a categorical point of view, an eigenspace is simply the
equalizer in the diagram

Vλ
� � inc // V

λI //

T
// V .
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Eigenvalues and Eigenvectors

What type of eigenvalues and eigenvectors do our two favorite
operators have?

Theorem
The eigenvalues of a Hermitian operator are real.
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Eigenvalues and Eigenvectors

Proof.
Let T : V −! V be a Hermitian operator and let v be a vector of
norm 1, i.e. ⟨v , v⟩ = 1. Say that λ is the eigenvalue of T , i.e.,
T(v) = λv.

λ = λ⟨v , v⟩ because⟨v , v⟩ = 1

= ⟨λv , v⟩ by linearity of the inner product

= ⟨Tv , v⟩ by definition of an eigenvalue

= ⟨v ,Tv⟩ T is Hermitian

= ⟨v , λv⟩ by definition of an eigenvalue

= λ̄⟨v , v⟩ by anti-linearity of the inner product

= λ̄ because ⟨v , v⟩ = 1.

Since λ = λ̄, it is real. □
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Eigenvalues and Eigenvectors

Theorem
The eigenvectors of distinct eigenvalues for a Hermitian operator
are orthogonal.
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Eigenvalues and Eigenvectors

Proof.
Let T : V −! V be a Hermitian operator and let v and w be
vectors such that T(v) = λv and T(w) = µw with λ , µ.

λ⟨v ,w⟩ = ⟨λv ,w⟩ by linearity of the inner product

= ⟨Tv ,w⟩ by definition of an eigenvalue

= ⟨v ,Tw⟩ T is Hermitian

= ⟨v , µw⟩ by definition of an eigenvalue

= µ̄⟨v ,w⟩ by anti-linearity of the inner product

= µ⟨v ,w⟩ µ is real.

Since λ⟨v ,w⟩ = µ⟨v ,w⟩ and λ , µ, it must be that ⟨v ,w⟩ = 0. □

Notice that the converse of this theorem is not necessarily true.
That means that there could be a Hermitian operator with two
eigenvectors that are not orthogonal but their respective
eigenvalues are equal.
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Eigenvalues and Eigenvectors

Theorem
The eigenvalues of a unitary operator have modulus 1.
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Eigenvalues and Eigenvectors

Proof.
Let T : V −! V be a unitary operator and let v be an eigenvector
with eigenvalue λ.

|v |2 = |Tv |2 bec T preserves norms

= ⟨Tv ,Tv⟩ by definition of norm

= ⟨λv , λv⟩ by definition of eigenvalue

= λ⟨v , λv⟩ linear of the first variable

= λλ̄⟨v , v⟩ anti-linear of the second variable

= λλ̄|v |2. definition of norm.

So |v |2 = λλ̄|v |2 and by dividing out, we get that |λ| = 1. □
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