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Introduction

Category theory is about relating different categories. We will see
that there are many possible relationships between categories. In
this chapter we formally introduce functors between categories and
natural transformations between functors. We then move on to
employ these structures to relate categories in a myriad of ways.
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Introduction

While categories are interesting by themselves, the true
power of category theory is seeing the way categories are
related to each other.

Just as a function is the main way of expressing a relationship
between sets, so too, a functor is going to be the main way of
showing a relationship between categories.

A functor assigns to an object of one category an object of
another category and similar with morphisms.

The assignment respects domains and codomains.

We will show how to connect seemingly disparate areas using
functors.
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Definitions

Definition
Given two categories A and B, a functor F from A to B, written
F : A −! B, is a rule that assigns to every object a of A an object
F(a) of B, and assigns to every morphism f : a −! a′ in A a
morphism F(f) : F(a) −! F(a′) in B. These assignments must
satisfy the following two requirements:

Functors respect the compositions of morphisms: for
f : a −! a′ and f ′ : a′ −! a′′ in A, we require that
F(f ′ ◦A f) = F(f ′) ◦B F(f) where the ◦A on the left is the
composition in A while the ◦B on the right is the composition
in B. (We omit such subscripts when they are clear from the
contexts.)

Functors respect identity morphisms, i.e., they take identity
morphisms in one category to identity morphisms in the
second category: for all a in A, we require F(ida) = idF(a)
where ida is in A while idF(a) is in B.
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Definitions

A functor F : A −! B can be thought of as a pair of functions
F0 : Ob(A) −! Ob(B) and F1 : Mor(A) −! Mor(B). The fact
that f : a −! a′ in A, must go to F(f) : F(a) −! F(a′) in B
means that the assignments respect the domain and codomain
functions as in the commuting of the following two diagrams:

Mor(A)
F1 //

domA

��

Mor(B)

domB

��

Mor(A)
F1 //

codA

��

Mor(B)

codB

��

Ob(A)
F0

// Ob(B) Ob(A)
F0

// Ob(B).

These two commuting squares are similar to the diagrams we met
in the definition of a graph homomorphism.
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Definitions

A functor F : A −! B takes a morphism a −! a′ in A to a
morphism F(a) −! F(a′) in B, which means that for any a, a′ in
A there is a function of Hom sets:

HomA(a, a′) −! HomB(F(a),F(a′)).

These functions of Hom sets will be of central importance in this
course.
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Examples

We begin with some simple examples of functors.

Example

Let A be any category, then there is an identity functor
IdA : A −! A which is defined for object a as IdA(a) = a and
defined similarly for morphisms in A.

Example

Consider the natural numbers N as a partial order category. There
is a functor ( ) + 5 : N −! N that accepts a number m and adds
five to it, i.e., m + 5. This is a functor because it respects
morphisms (if m ≤ m′ then m + 5 ≤ m′ + 5) and it respects the
identity (idm) + 5 = idm+5.
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Examples

Example

There is a functor P : Set −! Set that takes a set S to its
powerset P(S). A set function f : S −! S′ will go to the set
function P(f) : P(S) −! P(S′) which is defined for X ⊆ S as its
image under f . In other words,

P(f)(X) = f(X) = {f(x) ∈ S′ | x ∈ S} ⊆ S′.

The function P(f) is also denoted f∗ and is called the direct image
of f . The requirements for being a functor are easily seen to be
satisfied. This functor is called the direct image functor.

Any functor from a category to itself is called an endofunctor. The
previous three examples are endofunctors.
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Examples

Example

Consider the real numbers, R, and the integers, Z, each
thought of as a partial order.

There is a functor Floor : R −! Z that takes any real number
r to Floor(r), the greatest integer less than or equal to r.

For example, Floor(3.7563) = 3 and Floor(−5.87) = −6.

The assignment Floor is a functor because if r ≤ r ′, then
Floor(r) ≤ Floor(r ′). The floor functor is also denoted as
Floor(r) = ⌊r⌋.

There is also a ceiling functor, Ceil : R −! Z that takes any
real number, r, to the least integer greater or equal to r. The
ceiling functor is denoted as Ceil(r) = ⌈r⌉.
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Examples

Example

There is a functor D : Set −! Graph that takes every set S
to the discrete graph D(S).

This is a graph with only objects and no morphisms.

Given a set function f : S −! S′, there is a similar graph
homomorphism D(S) −! D(S′) that takes objects of D(S) to
objects of D(S′) as described by f .

The requirements of being a functor are easily seen to be
satisfied.
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Forgetful Functors

Example

There is a forgetful functor U : Group −! Set from the
category of groups to the category of sets that “forgets” the
group structure.

Remember that a group is a set G with extra structure, i.e,
(G, ⋆, e, ( )−1).

The functor U takes a group and forgets the rest of the
structure, i.e., it takes a group to its underlying set.

This means U performs the following operation:
(G, ⋆, e, ( )−1) 7! G.

A group homomorphism is a set function that respects all the
structure.
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Forgetful Functors

Example (Continued.)

The functor U will take a group homomorphism to its
underlying set function, i.e., a group homomorphism
f : G −! G′ will go to the set function
U(F) : U(G) −! U(G′).

It is not hard to see that the requirements for U being a functor
are satisfied.

There is a similar functor from the category of monoids
U : Monoid −! Set that forgets the monoid structure.
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Examples
The following two functors will be of importance in the coming
sections.

Example

For every set B there is a functor LB : Set −! Set that is
defined on set A as LB(A) = A × B.

Morphism f : A −! A ′ goes to
LB(f) = f × idB : A × B −! A ′ × B.

For every set B there is also a functor RB : Set −! Set that
is defined on input set C as RB(C) = HomSet(B ,C).

For f : C −! C ′ we define
RB(f) : HomSet(B ,C) −! HomSet(B ,C ′) on input
g : B −! C as RB(f)(g) = f ◦ g : B −! C −! C ′ which is in
HomSet(B ,C ′).

The functor RB is called a representable functor. It is
represented by B.
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Examples

Example

There is a functor F : Set −!Monoid that takes every set
S to the free monoid F(S) = S∗.

This monoid consists of the set of all strings of elements in S.
In other words, think of S as a set of letters or an alphabet,
then F(S) is the set of words that can be made from those
letters.

Given two words X = s1s2 · · · sm and Y = s′1s′2 · · · s
′
n, the

multiplication is the concatenation of the two strings
X • Y = s1s2 · · · sms′1s′2 · · · s

′
n.
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Examples

Example (Continued.)

The unit of the monoid is the empty word ∅ that has no letters.

For a set function f : S −! T the value of
F(f) : F(S) −! F(T) takes a word in S such as s1s2 · · · sm to
f(s1)f(s2) · · · f(sm) which is a word in T.

This functor is important in mathematics and is called the free
monoid functor.

It is also important in computer science, where it is called the
list functor.
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Types of Functors

There are many different types of functors. With sets we ask if a
function is one-to-one or onto. With categories we ask if a functor
is one-to-one or onto with respect to objects and with respect to
morphisms.
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Types of Functors

There are properties of functors that depend on the way it assigns
objects from one category to the other.

Definition
A functor F : A −! B can be

injective on objects

surjective on objects

bijective on objects.

There are also properties of functors that depend on morphisms.
We call a functor

full if, for all a and a′, the map
HomA(a, a′) −! HomB(F(a),F(a′)) is onto

faithful if for all a and a′, the map
HomA(a, a′) −! HomB(F(a),F(a′)) is one-to-one.

fully faithful when a functor is both full and faithful.
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Types of Functors

Let us discuss various families or types of functors.

Definition
If A is a subcategory of B then there is an inclusion functor from
A to B that takes every object in A into the same object in B. We
denote such a functor as A ↪−! B. Inclusion functors are injective
on objects and faithful. We also say that such functors are the
identity on objects, that is, the functor takes an object a to a.
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Examples

Example

Examples of inclusion functors abound.

There is an inclusion of finite sets into sets, FinSet ↪−! Set.

Abelian groups include into all groups, AbGp ↪−! Group.

There are three related categories that have sets as objects.
The category Set has set functions as morphisms, Par has
partial functions as morphisms, and Rel has relations as
morphisms. There are inclusion functors

Set ↪−! Par ↪−! Rel.

Notice that all three of these categories have the same
objects, namely sets, and both inclusion functors are the
identity on objects.
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Examples

Example (Continued.)

If you think of the sets of numbers N,Z,Q,R, and C with
addition as monoids (one-object categories) then there are
inclusion functors.

N ↪−! Z ↪−! Q ↪−! R ↪−! C.

All these functors take the single object to the single object
(hence they are technically bijective on objects) and faithful on
the set of morphisms.

If you think of the numbers N,Z,Q,R, and C as partial orders
(in fact, all except the usual way of thinking about C are total
orders,) then these inclusion functors are injective on objects
and full and faithful on morphisms.
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Examples

Example (Continued.)

Remember that for a field K, the category of KMat has the
natural numbers as objects and for m, n ∈ N, HomKMat(m, n)
is the set of n by m matrices with entries in K. We have the
following inclusion functors

NMat ↪−! ZMat ↪−! QMat ↪−! RMat ↪−! CMat.

Notice that all these categories have the natural numbers as
objects and all the functors are the identity on objects.

There is an inclusion of the category of partial orders into the
category of preorders. Since both categories have order
preserving maps as their morphisms, the inclusion
PO ↪−! PreO is full and faithful.

There is an inclusion for every n of n-Manif ↪−!Manif.
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Types of Functors

Definition
A special type of inclusion functor is an embedding. This is a
functor that is not only an inclusion (injective on objects and
faithful) but also full. This means that between any two objects in
the subcategory, the Hom sets are isomorphic. A subcategory with
such an embedding is called a full subcategory.
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Examples

Example

The following are embeddings:

FinSet ↪−! Set

AbGp ↪−! Group

PO ↪−! PreO

n-Manif ↪−!Manif.
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Types of Functors

We saw a functor that forgets the group structure of a group. There
are many functors that are called forgetful functors which forget
or disregard part of the structure of an object in a category. Such
functors are usually denoted by the letter U, which might stand for
“underlying.” Since two different morphisms will go to two different
underlying morphisms, forgetful functors are faithful.
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Examples

Example

Similar to the forgetful functor U : Group −! Set, there are
forgetful functors from categories like Magma, Monoid,
Ring, Field, etc., to Set.

We do not have to forget all the structure. For example, given
a ring (M, ⋆, e,−,⊙, u), we can forget its second operation
and second unit to get an abelian group (M, ⋆, e,−). This
gives us a functor U : Ring −! AbGp. We can further
forget its inverse operation and get a monoid (M, ⋆, e). This is
a functor U : Ring −!Monoid. Rather than forgetting the
second operation, second unit, and inverse operation, we can
forget its first operation, first unit, and inverse operation and
get a monoid: (M,⊙, u). This is a different functor
U′ : Ring −!Monoid. There are many more examples
along this path.
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Examples

Example (Continued.)

There is a functor Top −! Set that forgets the open set
structure, U((T , τ)) = T. There is also a forgetful functor that
takes a manifold (which is a topological space with more
structure) and forgets the manifold structure. The output is a
topological space. This gives us a functor Manif −! Top.
Furthermore, we can forget the manifold structure “all the way
down” to Set and get a forgetful functor Manif −! Set.

Given a complex scalar multiplication on a vector space, one
can forget the action of the imaginary numbers and get a real
scalar multiplication on the vector space. In other words, the
scalar multiplication · : R × V −! V is simply the restriction of
· : C × V −! V to the real numbers). This entails a forgetful
functor CVect −! RVect.
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Examples

In contrast to an inclusion functor, a forgetful functor is usually not
injective on objects. For example, the forgetful functor from Top to
Set is not injective on objects because there might be many
different topologies that one can put on a single set. Similarly, the
forgetful functor from graphs to sets is not injective on objects
because there are many different graphs for a set of vertices.
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Examples

Remark

This brings to light a general thought about the relationship
between structures. Consider two types of structures: A-structures
and B-structures. There are a lot of possible different relationships
between the two structures. Let us highlight two possible
relationships:

There can be an inclusion functor from the category of
A-structure to the category of B-structure. This is the case
when the A-structures are special types of B-structures that
satisfy more requirements. Another way to say it is that
A-structures have more properties than B-structures. For
example, an abelian group is a special type of group which
satisfies commutativity. Or a finite set is a special type of set
that is finite. Or a n-dimensional manifold is a special type of
manifold.
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Examples

Remark (Continued.)

There can be a forgetful functor from the category of
A-structures to the category of B-structures. This is the case
when the A-structures have more operations than the
B-structures. Another way to say it is that A-structures have
more structure than B-structures. For example, a ring has
more operations than a group and hence there is a forgetful
functor from rings to groups. Another example: a partial order
has more structure than a set, so there is a forgetful functor
from partial orders to sets. Yet another example: a topological
space has more structure than a set, so there is a forgetful
functor from topological spaces to sets.
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Examples

Remark (Continued.)
We can see this clearly with all the algebraic structures described

in this definition. We write ↪−! for an inclusion functor and U //

for a forgetful functor.

Field
U // Ring

U // Group
U //Monoid

U // SemiGp

AbGp
?�

OO

Magma
?�

OO

We also highlight these different relationships in this Venn diagram.
Inclusion relationships are described with regular lines, while
forgetful functors are described with zig-zag lines.
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Examples

Just as functions can be composed, so too functors can be
composed.

For F : A −! B and G : B −! C, the composition
G ◦ F : A −! C is defined as (G ◦ F)(a) = G(F(a)).

The composition is defined for morphism f : a −! a′ as
(G ◦ F)(f) = G(F(f)) : G(F(a)) −! G(F(a′)).

If there are two composable morphisms f and f ′ in A, then we
will have expressions like (G ◦ F)(f ′ ◦ f).

The ◦ on the left denotes composition of functors and the ◦ on
the right denotes composition in A.
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Examples

Theorem
The composition of two functors is a functor.

Proof.
Given F : A −! B and G : B −! C we have to show that G ◦ F is
a functor.

On object a in A, (G ◦ F)(a) = G(F(a)).

For f : a −! a′ and f ′ : a′ −! a′′ we have

(G ◦ F)(f ′ ◦ f) = G(F(f ′ ◦ f)) = G(F(f ′)) ◦ G(F(f))

= (G ◦ F)(f ′) ◦ (G ◦ F)(f).

For a in A,

(G◦F)(ida) = G(F(ida)) = G(idF(a)) = idG(F(ida)) = id(G◦F)(ida)

□
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Examples

We are ready to move up a level. Till now we have dealt with two
structures and a functor between them. Now we will talk about all
structures and all functors between them.

A Category Defined

The composition of functors and the identity functors bring to light
one of the most important examples of a category:

CAT is the category of all categories and functors between
them.

We are mostly interested in a subcategory Cat which
consists of all locally small categories and functors between
them.
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Examples

Exercise
Show that 0 is the initial object in Cat and 1 is a terminal object in
Cat.
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Examples

Example

In this text, we have already seen many functors that take values in
Cat. When we wrote about them, we did not have the language to
describe them as functors. Now we do.

Every set can be thought of as a discrete category. For every
set S, there is a discrete category d(S). This is a functor
d : Set −! Cat. The objects of d(S) are the elements of S
and the only morphisms are identity morphisms. If
f : S −! S′, then there is a corresponding functor
d(f) : d(S) −! d(S′) where d(f)(s) = f(s)
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Examples

Example (Continued.)
Every monoid is a one-object category. For every monoid M,
there is a one-object category A(M) whose morphisms are
the elements of M and whose composition is the monoid
multiplication. This is a functor A : Monoid −! Cat. If
f : M −! M′ is a monoid homomorphism, then
f(m ⋆ m′) = f(m) ⋆′ f(m′). This requirement shows that the
obvious map A(f) : A(M) −! A(M′) that takes the single
object to the single object and respects the composition is a
functor.
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Examples

Example (Continued.)
Every partial order is a category. For every partial order
(P,≤), there is a category B(P,≤), or just B(P), whose
objects are the objects of P, and there is a single morphism
from p to p′ in B(P) if and only if p ≤ p′. This is a functor
B : PO −! Cat. An order preserving f : (P,≤) −! (P′,≤′)
induces a functor B(f) : B(P,≤) −! B(P′,≤′). Whatever we
said about partial orders is also true for preorders. This
means that there is a functor PreO −! Cat.
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Examples

Example (Continued.)
Every group is a one-object category where all the morphisms
are isomorphisms. Every group can be thought of as a
one-object category where the elements of the group become
invertible morphisms in the category. The composition in the
category is the group multiplication. The inverse of the
morphism is the inverse of the related element. This describes
a functor C : Group −! Cat. Group homomorphisms
f : G −! G′ become functors C(f) : C(G) −! C(G′).
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Examples

Example (Continued.)

The powerset of a set is a partial order category. For every set
S, P(S) has the structure of a partial order. This gives us a
functor Set −! PO, and we saw that there is a functor
B : PO −! Cat. Composing these two functors gives us
P : Set −! Cat. Every set function f : S −! S′ induces the
direct image functor P(f) : P(S) −! P(S′) that we met here.

The opposite operation takes a category to its opposite
category. For a category A there is a category Aop . This a
functor ( )op : Cat −! Cat. It also takes a functor
F : A −! B to the functor Fop : Aop −! Bop (which is
defined in the obvious way.)
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Examples

Exercise

Show that ( )op ◦ ( )op = IdCat, i.e., for any category A,
((Aop)op) = A.
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Examples

When dealing with sets, we have a method of saying that two sets
are essentially the same. We called a set functions f : S −! T an
isomorphism if there exists a g : T −! S such that for all s in S,
g(f(s)) = s and for all t in T , f(g(t)) = t . Another way to say that
is g ◦ f = IdS and f ◦ g = IdT . Set S is isomorphic to set T if there
is an ismorphism between them and we write it as S � T .
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Types of Functors

We extend this idea to categories.

Definition
Let A and B be categories. A functor F : A −! B is an
isomorphism if there exists a functor G : B −! A called the
inverse of F such that G ◦ F = IdA and IdB = F ◦ G (we will soon
explain why we are writing it this way as opposed to the equivalent
F ◦ G = IdB.)
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Similar to Diagram (??), we can express this as

A B.

F

idAG◦F =

G

idB F◦G=
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Types of Functors

Definition
Category A is isomorphic to category B if there is an
isomorphism between them, and which we write as A � B.
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Types of Functors

Exercise
Show that categories A and B are isomorphic if and only if there is
a functor F : A −! B that is bijective on objects, full, and faithful.

Essentially, an isomorphism of categories means that the
categories have exactly the same structure. The two functors
essentially rename the objects and morphisms of the categories.
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Examples

Example

Let us examine some simple examples of isomorphism of
categories.

An identity functor is an isomorphism.

We saw that for any category A, the product A × 1 is
essentially the same as A. Specifically, the projection functor
πA : A × 1 −! A is an isomorphism.

Relop � Rel. The isomorphism functor takes the set S to S
and the relation R ⊆ S × T to the inverse relation
R−1 ⊆ T × S. Notice that this works for Rel. It does not work
with Set or Par.

KMatop � KMat. The isomorphism functor
( )T : KMatop −! KMat is the identity on the natural
numbers and takes A : m −! n to AT : n −! m. The inverse
of the isomorphism functor is itself, i.e., (AT )T = A.
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Central Idea

Important Categorical Idea

Weakening Structures.

The notion of an isomorphism of category is a legitimate idea
but it is a very strong requirement.

The necessity that G ◦ F is equal to IdA and F ◦ G is equal to
IdB ensures that there are not a lot of interesting, nontrivial
examples of isomorphism of categories.

The main problem is that insisting on equality is too strong.

In general, the weaker the assumption, the more phenomena
we can encapsulate.

How weak can we go?

This topic is central in higher category theory which we will
meet.
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Examples

Example

Let A be a locally small category and a ∈ A. We know that for
every b ∈ A, there is a set HomA(a, b). This brings to light the
functor

HomA(a, ) : A −! Set.

For every object b ∈ A there is a set HomA(a, b) and for every
f : b −! b ′ in A there is a morphism of sets

HomA(a, f) : HomA(a, b) −! HomA(a, b ′)

which takes g : a −! b to f ◦ g : a −! b −! b ′ in HomA(a, b ′).
That is, HomA(a, f)(g) = f ◦ g. Since this functor is induced by f ,
we sometimes denote HomA(a, f) as f∗.
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Example (Continued.)

Let us show that HomA(a, ) satisfies the requirement of being a
functor.

HomA(a, ) preserves composition: for f : b −! b ′ and
f ′ : b ′ −! b ′′, then

HomA(a, f ′◦f)(g) = f ′◦f ◦g = (HomA(a, f ′)◦HomA(a, f))(g),

and

HomA(a, ) preserves the identity morphisms: for
idb : b −! b,

HomA(a, idb)(g) = idb ◦ g = g = IdHom(a,b)(g).

We will see later that functors of the form HomA(a, ) are
representable functors. The a represents the functor.
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Types of Functors

Functors actually come in two flavors: covariant functors
and contravariant functors.

Although we did not have the name yet, all the functors that
we have seen till now are covariant funtors.

The word “covariant” means the functor varies the same way
the source category varies.

In other words, if there is a morphism from a to a′ in the
source category, then the covariant functor F takes that
morphism from F(a) to F(a′) in the target category.

In stark contrast, a contravariant functor would go “contra” or
against (opposite) the way the source category varies.

In other words, if there is a morphism from a to a′ in the
source category, then the contravariant functor F takes that
morphism from F(a′) to F(a) in the target category.
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Types of Functors

Definition
Given two categories A and B, a contravariant functor F from A

to B, written F : A −! B, is a rule that assigns to every object a of
A an object F(a) of B and assigns to every morphism f : a −! a′

in A, a morphism F(f) : F(a′) −! F(a) in B (notice the direction).
These assignments must satisfy the following two requirements:

Functors reverse the composition of morphisms: for
f : a −! a′ and f ′ : a′ −! a′′ in A, we require that
F(f ′ ◦ f) = F(f) ◦ F(f ′) where the ◦ on the left is the
composition in A while the ◦ on the right is the composition in
B.

Functors respect identity morphisms: for all a in A, we require
F(ida) = idF(a) where ida is in A while idF(a) is in B.
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Example

We saw that HomA(a, ) is a covariant functor.

In contrast, HomA( , a) is a contravariant functor.

In detail, for every locally small category A, and every object
a ∈ A, there is a contravariant functor
HomA( , a) : A −! Set.

For object b ∈ A, there is a set HomA(b , a), and for
f : b −! b ′ there is a set function

HomA(f , a) : HomA(b ′, a) −! HomA(b , a)

which takes g : b ′ −! a in HomA(b ′, a) to
g ◦ f : b −! b ′ −! a in HomA(b , a).

Since this map is induced by f and it is contravariant, we
sometimes denote HomA(f , a) as f∗. Bear in mind the
contrast between the covariant f∗ and the contravvariant f∗.
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Example (Continued.)

Let us show that HomA( , a) satisfies the requirement of being a
contravariant functor.

HomA( , a) reverses composition: for f : b −! b ′ and
f ′ : b ′ −! b ′′,

HomA(f ′ ◦ f , a)(g) = g ◦ f ′ ◦ f = (HomA(f , a) ◦Hom(f ′, a))(g),

and

HomA( , a) preserves the identity morphisms: for
idb : b −! b,

HomA(idb , a)(g) = g ◦ idb = g = idHom(b ,a)(g).

We will see later that functors of the form HomA( , a) are also
called representable functors. The a represents the functor.
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Let us apply this to a concept we saw in linear algebra.

Example

We saw that for every set S, the set Func(S,C) has the structure
of a complex vector space. If f : S −! S′ is a set function, then
Func(f ,C) : Func(S′,C) −! Func(S,C) is a linear map and
hence

Func( ,C) : Set −! CVect

is a contravariant functor.
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Example

We saw the covariant direct image functor from Set to Set that
takes set S to P(S). There is a contravariant version of this. The
functor P′ : Set −! Set performs the same action on the objects
(i.e., P′(S) is the powerset of S) but is contravariant. For set
function f : S −! T, the functor is defined for Y ⊆ T as

P′(f)(Y) = f−1(Y) = {x ∈ S | f(x) ∈ Y } ⊆ S.

This functor can be visualized as

f−1(Y) //
� _

��

Y� _

��

S
f

// T .

This functor is called the preimage functor or the inverse image
functor.
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There is really no reason to use the nomenclature of contravariant
functors for the simple reason that every contravariant functor
F : A −! B has a related covariant functor F ′ : Aop −! B that
performs the same action. Remember that in Aop , the arrows are
all turned around, and the composition is reversed (see.) Thus the
contravariant functors in the previous two Examples can be written
as covariant functors

Func( ,C) : Setop −! CVect and P′ : Setop −! Set.
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Type of Functor

Functors might have more than one input.

Definition

Given categories A, B, and C, a bifunctor F : A ×B −! C is
simply a functor from the product of A and B to C. In particular, F
is a rule that assigns to every object a of A and b of B, an object
F(a, b) of C, and assigns to every morphism f : a −! a′ in A and
morphism g : b −! b ′ in B, a morphism
F(f , g) : F(a, b) −! F(a′, b ′) in C.
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Type of Functor

Definition (Continue.)

These assignments must satisfy the following two requirements:

Functors respect the compositions of morphisms: for
f : a −! a′, f ′ : a′ −! a′′, g : b −! b ′ and g : b ′ −! b ′′ we
require that

F(f ′ ◦ f , g′ ◦ g) = F(f ′, g′) ◦ F(f , g)

where the ◦ on the right is the composition in C.

Functors respect identity morphisms: for all a in A and b in
B, we require F(id(a,b)) = idF(a,b) where id(a,b) is in A ×B
while idF(a,b) is in C.
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Technical Point
Many times, rather than writing the name of the bifunctor before
the input, like G(a, b) we write the name of the bifunctor as an
operation between the input, e.g., a□b. If we write the bifunctor
between the inputs, then

F(f ′ ◦ f , g′ ◦ g) = F(f ′, g′) ◦ F(f , g)

becomes
(f ′ ◦ f)□(g′ ◦ g) = (f ′□g′) ◦ (f□g).

This is another instance of an interchange law that we will see in
Important Categorical Idea with morphism composition as one
operation and the bifunctor as the other operation.
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Bifunctors can be generalized to a multifunctor that takes inputs
from a finite number of categories

F : A1 ×A2 × · · · ×An −! B.

The functor might be contravariant in some of the inputs. In such a
case, we can look at the opposite category of those inputs and
only consider covariant functors. For example, The functor

HomA( , ) : Aop ×A −! Set.

is a bifunctor where the first input works contravariantly and the
second input works covariantly.
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Example

Let A be any category with binary products. We can think of the
binary product as a functor Prod that takes two objects of A as
inputs and outputs their product. That is, there is a functor
Prod : A ×A −! A such that Prod(a, a′) = a × a′. In particular,
the product of two categories can be described this way. That is,
there exists a functor Prod : Cat ×Cat −! Cat.

Technical Point
There is a slight problem that we have to worry about with the
above Example. A product of two elements in a category is defined
up to a unique isomorphism. In general, there is no unique product
(or coproduct) of two elements. So which product should the
functor choose? Sometimes we will just assume that the functor
chooses one. Sometimes we will simply ignore the question
because whatever choice we make will work.
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There are a few functors related to the product of two categories.

Example

For any categories A and B, there are projection functors
πA : A ×B −! A and πB : A ×B −! B. The functor πA is
defined on objects as πA(a, b) = a and on morphisms
πA(f , g) = f . The other projection is defined analogously. For any
categories A and B, there is a braid functor
brA,B : A ×B −! B ×A that takes object (a, b) to (b , a) and
morphism (f , g) to (g, f). For any category A, there is a diagonal
functor ∆A : A −! A ×A that takes a to (a, a) and is defined
similarly for morphisms.
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The rest of this section will just be examples of functors. Some of
these functors will play prominent roles in the rest of this course.
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Example

Let (M, ⋆, e) be a monoid. An M-set is a set S with a way that the
elements of M “act” or change the elements of S. The “action” is a
function · : M × S −! S which must satisfy the following two
commutative diagrams:

M ×M × S
⋆×id //

id×·
��

M × S

·

��

{∗} × S

�
((

u×id // M × S

·

��

M × S ·
// S S.

(Reminder: the map u : {∗} −! M is the set function that chooses
the unit e of the monoid.)
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Example (Continue.)

In detail, this means the following requirements are satisfied.

The action must respect the monoid multiplication. This
means that if m and m′ are elements of M, then the action of
m ⋆m′ is the same as first acting with m′ and then acting with
m. That is, for all m,m′ in M, and for all s ∈ S, we have that

(m ⋆ m′) · s = m · (m′ · s)

where ⋆ is the monoid multiplication.

The action of the identity of the monoid does not make any
changes. That is, for e, the identity of the monoid, and for all
s ∈ S

e · s = s.
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Example (Continue.)

One can view an M-set as a functor. Think of M as a one-object
category A(M). Then any functor F : A(M) −! Set is an M-set.
The functor F takes the single object ∗ to a set, say S. For every
m ∈ M which corresponds to a morphism m : ∗ −! ∗ in the
one-object category, the image of m under F describes the action
of m, i.e., F(m) : S −! S. This is simply an instance of the
following isomorphism:

Hom(M,Hom(S,S)) � Hom(M × S,S).
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Example

There is a functor O : Topop −! PO. This functor takes a
topological space and outputs the partial order of all the open sets.
Letting (T , τ) be a topological space, we write O(T) (rather than
O((T , τ))) for the partial order of all the open sets. If U and U′ are
open sets of T then U ≤ U′ if and only if U ⊆ U′. The reason for
Topop and not Top is that f : T −! T ′ is a continuous map of
topological spaces if f−1 takes open sets of T ′ to open sets of T.
This translates into the fact that O(f) : O(T ′) −! O(T). It turns out
that many properties of a topological space can be determined by
simply examining the partial order of open sets. Sometimes this
area is humorously called “Pointless Topology”. This is also a
beginning of topos theory, which can be found in Chapter 9.
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Example

Let us connect the world of relations and matrices.

Consider the natural number n as the set n̄ = {1, 2, . . . , n}.

Define the full subcategory NatRel of Rel to be a category
whose objects are these finite sets of natural numbers.

In detail, the morphisms from m̄ = {1, . . . ,m} to n̄ = {1, . . . , n}
are relations from the first set to the second set.

There is a functor F : NatRel −! BoolMat where BoolMat
is the category of matrices with Boolean entries. Functor F is
bijective on objects, i.e., F(m̄) = m.

For R ⊆ {1, 2, . . . ,m} × {1, 2, . . . , n}, we define the matrix F(R)
as (F(R))[i, j] = 1 if and only if (j, i) ∈ R.
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Example

Similar to NatRel, there is also NatPar (objects are the sets of
natural numbers and morphisms are partial functions) and NatSet
(objects are sets of natural numbers and morphisms are all
function.) There are inclusions

NatSet ↪−! NatPar ↪−! NatRel

and each of these inclusion are the identity on objects and are
faithful but not full.
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Example (Continued.)

There are restriction functors to the functor F:

NatSet� v
F ′′

))

� _

��

NatPar
F ′ //

� _

��

BoolMat

NatRel

F
�

55

Let us characterize the image of each of these functors.

The image of F will be any Boolean matrix.

The image of F ′ will have any Boolean matrix where there is
no more than a single 1 on each row.

The image of F ′′ will have exactly one 1 on each row.
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Example

Consider the category KMat of all matrices with entries in K. Let
KFDVect be the full subcategory of KVect consisting of all finite
dimensional K vector spaces. There is a functor
F : KMat −! KFDVect that takes m to the vector space Km.
The functor takes the morphism A : m −! n (an n by m matrix), to
the linear transformation TA which is defined for B ∈ Km as
TA (B) = AB ∈ Kn. The F is a functor because if A : m −! n and
A ′ : n −! p, then TA : Km −! Kn and TA ′ : Kn −! Kp and

F(A ′ ◦ A) = T(A ′·A) = TA ′ ◦ TA = F(A ′) ◦ F(A)

and F(idm) = TIdKm = IdKm .
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Let us consider some examples from logic and computer science.

Example

There is an interesting functor from the category Proof of proofs
to the category Prop of propositions, Q : Proof −! Prop. The
objects of both categories are all propositions of a certain logical
system and Q is the identity on objects. The functor Q takes a
proof to the implication it proves. In particular, if A and B are two
propositions and f : A −! B is a proof that A implies B (there
might be many), then Q(f) : Q(A) −! Q(B). If Q is full (i.e., every
implication has a proof in the system,) then we say that the logical
system is complete. In contrast, if Q is not full (i.e., there is an
implication that does not have a proof,) then we say that the logical
system is incomplete.
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Example (Continued.)
Things get even more interesting when we deal with two logical
systems where one system is a subsystem of the other. Then we
will have two such functors and a diagram

Proof ′
� � //

Q ′
��

Proof

Q
��

Prop′
� � // Prop.

Q ′ can describe a complete logical system and Q can describe a
larger incomplete system. (For example, the right-hand system
might be Peano Arithmetic, which we know from Gödel’s
Incompleteness Theorem, is incomplete. At the same time, the
left-hand system is a smaller complete system such as Presburger
Arithmetic.).
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The next three functors relate matrices, Boolean functions, and
logical circuits.

Example

There is a functor FuncDesc : Circuit −! BoolFunc that
describes logical circuits as Boolean functions. Remember that
Circuit is the category of logical circuits. The objects are the
natural numbers and the morphisms are logical circuits. Notice that
a circuit with m input wires and n output wires has 2m possible
inputs and 2n possible outputs. Consider the category BoolFunc
whose objects are natural numbers and whose morphisms from m
to n are the total (computable) functions from {0, 1}m to {0, 1}n.
Composition in BoolFunc is simple function composition.
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Example (Continue.)

The functor takes every circuit to the Boolean function it performs.
The functoriality means that the composition of circuits gives you
the composition of the Boolean functions they perform. This means

FuncDesc(C ′ ◦ C) = FuncDesc(C ′) ◦ FuncDesc(C).

This functor is the identity on objects and is full. It is not faithful
because there are many different logical circuits that perform the
same function.
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Example

There is a functor MatrixDesc : Circuit −! BoolMatop that
describes the operations of a logical circuit with a Boolean matrix.
Recall that BoolMat is the category of Boolean matrices. The
objects are the natural numbers and the morphisms are matrices
with entries that are either 0 or 1. The functor is defined as follows.
On the object m of Circuit, MatrixDesc(m) = 2m. Circuit C in
Circuit with m inputs and n outputs will go to the 2m by 2n matrix
MatrixDesc(C) whose i, j entry is 1 if and only if the jth binary input
to C outputs the ith output. We can see how this functor works with
some examples of simple logical gates. The inputs are on the top
of the matrices and the output is on the left.
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Example (Continued.)

MatrixDesc(NOT) =
[0 1

0 0 1
1 1 0

]

MatrixDesc(OR) =
[00 01 10 11

0 1 0 0 0
1 0 1 1 1

]

MatrixDesc(AND) =
[00 01 10 11

0 1 1 1 0
1 0 0 0 1

]

MatrixDesc(NAND) =
[00 01 10 11

0 0 0 0 1
1 1 1 1 0

]
.
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Example (Continued.)

The functor is contravariant because the composition of circuits
goes to matrix multiplication in opposite order, i.e., for C : m −! n
and C ′ : n −! p, we have

MatrixDesc(C ′ ◦ C) = MatrixDesc(C) ·MatrixDesc(C ′)

This functor is injective on objects and full, but not faithful. It is full
because every such matrix can be described by a circuit. It is not
faithful because there can be many different circuits that can
describe the same Boolean matrix. A variation of this functor will
play a major role in our mini-course on Quantum Computing,
Section ??.
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Example

There is a functor FuncEval : BoolFunc −! BoolMatop that
describes Boolean functions as Boolean matrices. On objects,
FuncEval is like MatrixDesc and takes m to 2m. The functor
FuncEval takes a Boolean function f : {0, 1}m −! {0, 1}n to the 2m

by 2n matrix FuncEval(f) whose i, j entry is 1 if and only if the jth
binary input to f outputs the ith output. This functor is contravariant
for the same reason as the MatrixDesc is. This functor is injective
(but not surjective) on objects, full and faithful.
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The previous three Examples have to be looked at together. They
express a triangle of functors:

Circuit
FuncDesc

ww

MatrixDesc

''

BoolFunc
FuncEval

// BoolMat.op

It is not hard to see that the triangle commutes.
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Example

Remember we met the category NANDCircuit. The objects are
the natural numbers, and the set of morphisms from m to n is the
set of all logical circuits made of NAND gates that have m input
wires and n output wires. This category is a subcategory of
Circuit. Notice that NANDCircuit and Circuit have the
same objects. There is an obvious inclusion functor
inc : NANDCircuit ↪−! Circuit that is the identity on the
objects.
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Example (Continued.)

Every circuit in Circuit is equivalent to a circuit with only NAND
gates and fanout operations. This means that there is a functor
F : Circuit −! NANDCircuit that is the identity on objects
and takes every circuit to an equivalent functor as in the following
diagram:

NANDCircuit
� �

Inc
//

FuncDesc
))

Circuit

F

vv

FuncDesc
ww

BoolFunc.

The two triangles commute, and F ◦ Inc = Id. In general,
Inc ◦ F , Id.
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Foreshadowing

Chapter 4: Relationships Between Categories
Section 4.2: Natural Transformations

Definitions
Isomorphic Natural Transformations
Vertical Composition of Natural Transformations
Horizontal Composition of Natural Transformations
Examples
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Functors are just the beginning of the story. Just as functors relate
categories, so too natural transformations relate functors. A functor
goes from a category to a category, while a natural transformation
goes from a functor to a functor. Intuitively, if you think of functors
F : A −! B and G : A −! B as ways of providing images of A in
B, then a natural transformation from F to G is a way of going from
the image of F to the image of G. One can visualize a natural
transformation as the diagram on the next slide.
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A
F

G

B

α

Two categories A and B, two functors F and G, and a natural
transformation α taking the image of F to the image of G.
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Definition
Let F : A −! B and G : A −! B be functors. A natural
transformation α from F to G, written α : F =⇒ G or

A

F

&&

G

88α ⇓ B,

is a rule that assigns to every object a in A a morphism
αa : F(a) −! G(a) called the component of α at a.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 4.2: Natural Transformations



Definitions

Definition (Continued.)

This assignment must further satisfy the following naturality
condition: for every morphism f : a −! a′ in A, the square

F(a)
αa //

F(f)

��

G(a)

G(f)

��

F(a′) αa′
// G(a′)

commutes.
Notice that a natural transformation is written with a =⇒ but each
of its components is written with a −!.
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The functors F and G can be described as we saw. We can add α
to those diagrams as in

Mor(A)
F1 //

domA

��

Mor(B)

domB

��

Mor(A)
G1 //

codA

��

Mor(B)

codB

��

Ob(A)

α

;;

F0

// Ob(B) Ob(A)

α

;;

G0

// Ob(B)

and insist that the lower triangles commute. Let us explain the
squares. The diagonal map takes an object a to
αa : F(a) −! G(a). The lower triangle in the left square says that
αa goes from F(a), while the lower triangle in the right square says
that αa ends in G(a). Notice that the top triangle do not, in general,
commute.
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First some examples:

Example

Just like every category has a unique identity functor, so too, every
functor has a unique identity natural transformation. Such a
natural transformation does not change the functor. Formally, for
every F : A −! B there is a natural transformation ιF : F =⇒ F (ι
is the Greek letter iota) where each component is
(ιF)a = idF(a) : F(a) −! F(a).
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Example

In computer science there is a list functor List : Set −! Set that
takes a set of elements to the set of all lists or sequences of the
elements of the set. (this functor was also called the “free monoid
functor.”) For S = {a, b , c}, we have
List(S) = {∅, a, b , c, aa, ab , ac, ba, bb , bc, ca, cb , cc, aaa, . . . } For
a set map f : S −! T, List takes every element in the list to the
value of the function. For example, if f : {a, b , c} −! {x, y} where
a 7! y, b 7! x, and c 7! y, then the function List(f) will take the
word accbab to the word yyyxyx.
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Example (Continue.)

There are three natural transformations associated to this functor:

Reverse : List( ) =⇒ List( ). This natural transformation
takes a word to the word reversed. For example,
ReverseS(accbab) = babcca.

Unit : IdSet( ) =⇒ List( ). This natural transformation takes
an element of the original set (alphabet) to the word of length
one that contains that word. For example, UnitS(b) = b.

Flatten : List(List( )) =⇒ List( ). This natural transformation
takes a list of lists and makes it into a list of words. For
example, for the set S = {a, b , c} an element of List(List(S))
is aba, bbbbc, caaba, bca. This element will go to the element
ababbbbccaababca.
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Example

Given two M sets · : M × S −! S and ·′ : M × S′ −! S′, an M-set
homomorphism is a set function f : S −! S′ that respects the
action. This means that for all m ∈ M and s ∈ S, f satisfies
f(m · s) = m ·′ f(s). In terms of diagrams this means that the
following square

M × S
idM×f

//

·

��

M × S′

·′

��

S
f

// S′

commutes. If F : M −! Set and G : M −! Set describe M-sets,
then a natural transformation from F to G is the same thing as an
M-set homomorphism.
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There are two types of composition of natural transformations:
vertical composition and horizontal composition. Vertical
composition, ◦V , takes a natural transformation α : F =⇒ G and a
natural transformation β : G =⇒ H and gives a natural
transformation β ◦V α : F =⇒ H. This can be visualized as follows:

A

F
α⇓

  G //

H

β⇓

>>B
� // A

F

%%

H

99(β ◦V α) ⇓ B.

The next slide has a drawing of how to think of it.
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A F

G

H

B

α

β

β ◦V α

Vertical composition of natural transformations.
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The component of β ◦V α on element a of A is defined as

(β ◦V α)a = βa ◦ αa : F(a) −! G(a) −! H(a)

which is natural because each of the following squares are
commutative and hence the whole diagram is commutative

F(a)
αa //

F(f)
��

G(a)

G(f)
��

βa
// H(a)

H(f)
��

F(a′) αa′
// G(a′)

βa′
// H(a′).
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Remark

The collection of functors from A to B and natural transformations
between such functors form a category. We call such a structure a
functor category and denote it as BA = HomCat(A,B). We will
formally meet functor categories soon.
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With the notion of vertical composition of natural transformation,
we can talk about isomorphic natural transformations.

Definition
A natural transformation α : F =⇒ G is a natural isomorphism if
there exists a β : G =⇒ F such that β ◦V α = ιF and α ◦V β = ιG . In
such a case, F and G are called isomorphic functors.

It can easily be seen that a natural transformation α is a natural
isomorphism if and only if every one of its components
αa : F(a) −! G(a) is a isomorphism.
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Horizontal composition, ◦H, can be visualized as follows in withe
the diagram in the next slide.

C

J
$$

K

::
γ ⇓ D

L
$$

M

::δ ⇓ E
� // C

L◦J

''

M◦K

77(δ ◦H γ) ⇓ E

where the c ∈ C component of δ ◦H γ is defined to be

(δ ◦H γ)c = δK(c) ◦ L(γc) : L(J(c)) −! L(K(c)) −! M(K(c)).

This is equivalent to defining it as

(δ ◦H γ)c = M(γc) ◦ δJ(c) : L(J(c)) −! M(J(c)) −! M(K(c)).
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These two definitions are equivalent because of the following
square in E commutes out of naturality of δ:

LJ(c)
δJ(c)

//

L(γc)
��

(δ◦Hγ)c

((

MJ(c)

M(γc)
��

LK(c)
δK(c)

// MK(c).

The mapping δ ◦H γ is natural because for all f : c −! c′ in C
there is

LJ(c)
δJc //

LJ(f)
��

MJ(c)
M(γc)

//

MJ(f)
��

MK(c)

MK(f)
��

LJ(c′)
δJc′ // MJ(c′)

M(γc′ ) // MK(c′).

The left square commutes because of the naturality of δ. The right
square commutes because of the naturality of γ and the
functoriality of M.
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C

J

K

D

γ

E

L(γ)

M(γ)

L

M

(δ ◦H γ)

Horizontal composition of natural transformations.
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When there is a natural transformation of the following form

A
F // B

G

!!

G′

==
⇓ α C

J // D

then we consider the unwritten identity natural transformations ιF
and ιJ . We denote the horizontal composition of α ◦H ιF as αF and
ιJ ◦H α as Jα. These compositions of functors and natural
transformations are sometimes called whiskering.
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The vertical and horizontal compositions relate as follows:

A

F
α⇓

��G //

H

β⇓

@@B

J
γ⇓

��

L

δ⇓

@@

K // C
�Horiz// A

JF

(γ◦Hα)⇓

��KG //

LH

(δ◦Hβ)⇓

EEC

_

Vert
��

_

Vert
��

A

F

��

H

@@
(β ◦V α) ⇓ B

J

��

L

@@
(δ ◦V γ) ⇓ C

�
Horiz
// A

JF

��

LH

EE
ϵ ⇓ C.
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The vertical maps are describing vertical composition of natural
transformations while the horizontal maps are horizontal
compositions. The diagram shows two ways to go from the four
natural transformations to one natural transformation. Using the
definitions of the compositions gives the same natural
transformation. This means that the ϵ ⇓ in the bottom right corner
is

(δ ◦V γ) ◦H (β ◦V α) = (δ ◦H β) ◦V (γ ◦H α).

The fact that these two compositions form the same natural
transformation is another instance of the interchange law, which is
another instance of Important Categorical Idea. Here the two
operations are vertical and horizontal composition of natural
transformations.
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Remark

While CAT and Cat each contain categories and functors, they
are not the complete picture. Natural transformations are a third
level of structure. When all three levels are gathered, one has the
structure of a 2-category. Such structures contain objects (also
called 0-cells), morphisms between objects (also called 1-cells),
and 2-cells between morphisms. We denote a 2-category as a
category with a line above it as in, A. In particular, the 2-category
versions of CAT and Cat are denoted CAT and Cat,
respectively. We will see more about 2-categories throughout the
rest of this text. They will be formally defined and discussed in
terms of higher category theory.
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The rest of this section contains examples of natural
transformations.
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Example

This example a natural isomorphism from the first few pages of the
Eilenberg and Mac Lane’s premier paper introducing category
theory. It is a motivating example to show the importance of the
naturality condition.
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Example (Continue.)

There is a functor ( )∗ : KFDVect −! KFDVectop that takes a
vector space V to its dual vector space V∗ = HomKFDVect(V ,K).
We met the dual vector space at the end of our mini-course on
basic linear algebra. Let V be a finite dimensional K-vector space
with basis E = {e1, e2, . . . , en}. Then V∗ is a set of functions that
has the structure of a finite dimensional vector space and has a
basis F = {f1, f2, . . . , fn} where each fi : V −! K is defined as
fi(ej) = 1 if i = j and fi(ej) = 0 otherwise. For an arbitrary v ∈ V
where v = k1e1 + k2e2 + · · ·+ knen, we have fi(v) = ki .
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Example (Continue.)

There is a perfectly legitimate isomorphism of vector spaces
φV ,E,F : V −! V∗ which depends on E and F. It is defined as

φV ,E,F(k1e1 + k2e2 + · · ·+ knen) = k1f1 + k2f2 + · · ·+ knfn.

The inverse is obviously

φ−1
V ,E,F(k1f1 + k2f2 + · · ·+ knfn) = k1e1 + k2e2 + · · ·+ knen.

The fact that these isomorphisms depend on a basis has an
“unnatural” feeling to it. When two vector spaces are isomorphic,
why should the isomorphism depend on how the elements are
expressed? It seems more — dare we say — natural for there to be
an isomorphism independent of how the elements are expressed.
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Example (Continue.)
There is an isomorphism that does not depend on how it is
presented. Compose the functor
( )∗ : KFDVect −! KFDVectop with itself to get a covariant
functor ( )∗∗ : KFDVect −! (KFDVectop)op = KFDVect
which takes every vector space V to its “double dual” V∗∗. The
elements of

V∗∗ = HomKFDVect(HomKFDVect(V ,K),K)

are functions ψ : V∗ −! K.
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Example (Continue.)

There is an isomorphism of vector spaces θV : V −! V∗∗ that is
defined on an element v ∈ V to be the function that always
evaluates on the element v. That is,

θV(v) = ev[v]

where the function ev[v] : V∗ −! K is defined for any linear map
f : V −! K as

ev[v](f) = f(v).

This means that ev[v] simply evaluates at v. The linear
transformation θV is an isomorphism because it is injective, and
since dim(V) = dim(V∗) = dim(V∗∗), we know it is an
isomorphism.
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Example (Continue.)

These θV are components of a natural transformation

KFDVect

Id

&&

( )∗∗

88
⇓ θ KFDVect.

The fact that it is natural means that for all linear transformations
T : V −! W we have

V
θV //

T
��

V∗∗

T∗∗

��

W
θW

// W∗∗.
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Example (Continue.)
In words, we have shown that although a vector space, V, is
isomorphic with V∗, the isomorphism depends on the basis. In
contrast, V is naturally isomorphic to V∗∗. This means that the
isomorphism does not depend on the way the elements are
described. This naturality is one of the most important ideas in
category theory.
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Let A be a category with finite products. For objects a and b, there
is a functor HomA( , a × b) : A −! Set that takes c to
HomA(c, a × b). There is another functor
HomA( , a) × HomA( , b) : A −! Set that takes c to the set
HomA(c, a) × HomA(c, b). The rule that assigns to every pair of
maps f and g, the induced map ⟨f , g⟩ is a natural isomorphism.
Formally

⟨ , ⟩ : HomA( , a) × HomA( , b) =⇒ HomA( , a × b).
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Example (Continue.)

Naturality here means that if there is a function f : c′ −! c in A,
then the following diagram commutes:

HomA(c, a) × HomA(c, b)
⟨ , ⟩c

�
//

f∗×f∗

��

HomA(c, a × b)

f∗

��

HomA(c′, a) × HomA(c′, b)
⟨ , ⟩c′

�
// HomA(c′, a × b)

The fact that this natural transformation is a natural isomorphism
follows from our earlier discussion.
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Example

The category Group has groups as objects and homomorphisms
between groups as morphisms. There are no nontrivial morphisms
between homomorphisms, which means that Group does not
have 2-cells. However, if we look at groups as one-object
categories within the 2-category Cat, and homomorphisms as
functors between such one-object categories, then there are
natural transformations between such functors. Let G and G′ be
groups thought of as one-object categories and let F ,H : G −! G′

be functors. Then consider a natural transformation α : F =⇒ H as
in

G

H

77

F
''

α ⇓ G′.
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Example (Continue.)

Since there is only one object ∗ in G there is only one component
of α, namely α∗ : F(∗) −! H(∗). The morphism α∗ is an element
of G′. The naturality condition amounts to commutativity of

F(∗)
α∗ //

F(g)
��

H(∗)

H(g)
��

F(∗) α∗
// H(∗)

for all morphisms g in G. This means that a natural transformation
is an element α∗ in G′ such that for all g in G, we have that
α∗F(g) = H(g)α∗ or F(g) = (α∗)

−1H(g)α∗.
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Example (Continue.)
Notice that, in the same way, we can talk about a natural
transformation between two monoid homomorphisms as in

M

H

77

F
''

α ⇓ M′.

In that case, we have α∗F(m) = H(m)α∗. In general, we cannot
write F(m) = (α∗)

−1H(m)α∗ because α∗ need not be invertible.
There, however, might be an invertible element in M′ and we can
insist that our natural transformation uses this invertible element.
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Foreshadowing

Chapter 4: Relationships Between Categories
Section 4.3: Equivalences

Definitions
Examples
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Definitions

We saw that the notion of isomorphism of categories is very
strong and hence does not arise often in a nontrivial way.

However, if we weaken the notion of isomorphism, we get the
notion of equivalence of categories which arises often. (See
Important Categorical Idea.)

If F : A −! B is an isomorphism then for every b in B, there
is a unique a in B such that F(a) = b.

This basically says that the structure of A and B are exactly
the same.

Here we weaken this so that for every b in B there is some a
in A so that F(a) is not necessarily equal to b but is
isomorphic to b.

This is the essence of an equivalence of categories.
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Definition
Categories A and B have an equivalence between them if there
are functors F : A −! B and G : B −! A such that G ◦ F � IdA
and IdB � F ◦ G. Functors F and G are called quasi-inverses of
each other and we say that the two categories are equivalent
categories. We denote an equivalence as A ≃ B. Unpacking the
definition shows that, for every a in A, there is a b in B, such that
G(b) is isomorphic to a, and for every b in B, there is an a in A,
such that F(a) is isomorphic to b .
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Similar to this and this about isomorphisms, we can express this as

A B.

F

idAG◦F �

G

idB F◦G�
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Let us describe another way of discussing equivalence of
categories. From our discussion there arises the following
definition of a special type of functor.

Definition
We say a functor F : A −! B is essentially surjective, if for all b
in B, there is an a in A, such that F(a) is isomorphic to b.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 4.3: Equivalences



Definitions

Theorem
Categories A and B are equivalent if and only if there is a functor
F : A −! B that is (i) full, (ii) faithful, and (iii) essentially surjective.
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Proof.
(⇐=) Let F : A −! B be full, faithful, and essentially surjective.
We describe G, a quasi-inverse to F . For b in B, we let G(b) be
an a, such that F(a) � b which definitely exists because F is
essentially surjective. (For the cognoscenti, this assumes the
axiom of choice.) This will mean that there is an isomorphism
βb : FG(b) −! b. Given h : b −! b ′ in B, we can form

FGb
β

�
// b

h // b ′
β−1

�
// FGb ′ .

Since the source and the target of this morphism is in the image of
F and F is full and faithful, there is a unique ĥ : Gb −! Gb ′ such
that F(ĥ) is this morphism. Set G(h) = ĥ. This defines G and
shows that β is natural. Since GF(a) can equal a and the
isomorphism can be the identity, we can see that the
α : GF =⇒ IdA is natural. □
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Definitions

Proof.
(=⇒) Let α : G ◦ F −! IdA and β : F ◦ G −! IdB be two natural
isomorphisms. The functor F is

Essentially surjective. For every b, there is a G(b) and an
isomorphism βb : FG(b) −! b .

Faithful. If f and f ′ are morphisms in A and F(f) = F(f ′), then
by composing with G we have GF(f) = GF(f ′). By further
composing with αa′ and α−1

a as in the following diagram

GFa
αa //

GFf =

��

GFf ′

��

a

f
��

f ′

��

GFa′ αa′
// a′

we can see that αa′(GFf)α−1
a = αa′(GFf ′)α−1

a . The naturality
of α implies that f = f ′. Similar arguments show G is faithful.
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Proof.

Full. If g : F(a) −! F(a′), then G(g) : GF(a) −! GF(a′).
Let f : a −! a′ be defined as αa′ ◦ G(g) ◦ α−1

a . Also consider
GF(f) : GF(a) −! GF(a′). We have the commutativity of the
following two squares

GFa
αa //

GFf
��

Gg
��

a

f
��

GFa′ αa′
// a′.

One square commutes out of the definition of f and one
square commutes out of naturality of α. From this we get
GF(f) = G(g). Use the fact that G is faithful and we get that
F(f) = g. Thus F is full.

□
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For a category A, the skeletal category sk(A) includes into A. But
we can say more.

Theorem
Every category is equivalent to its skeletal category. Furthermore,
if two categories are equivalent, then their skeletal categories are
isomorphic, i.e.,

A
≃ // B

sk(A)
�

//
?�
≃

OO

sk(B).
?�
≃

OO

In particular, any two skeletal categories of a category are
isomorphic.
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Definitions

Proof.
Let F : A −! B be an equivalence of categories and let a′ be an
element of sk(A). The functor F takes a′ to b in B. There is an
element b ′ in sk(B) that is isomorphic to b. (The axiom of choice
was used here.) We make a functor F ′ : sk(A) −! sk(B) that
takes a′ to b ′. For each a there is exactly one such b and vice
versa. There is a similar discussion for morphisms. Hence, this
functor is an isomorphism. □
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Let us look at some examples of equivalence of categories and
skeletal categories.

Example

The world’s simplest example of an equivalence is the relationship
between the one-object category 1 and the category 2I which has
two objects and a single isomorphism between them. We can view
it as

∗ ≃ a � // b

In detail, there is a unique functor ! : 2I −! 1 and there is a functor
L : 1 −! 2I such that L(∗) = a. It is obvious that L◦! = id1 and
that ! ◦ L � Id2I . Another way to say this is that L is essentially
surjective. Thus we have shown that sk(2I) = 1. Notice that 2I is a
groupoid.
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Example
We can extend this example to all groupoids that have a unique
isomorphism between any two objects. Such groupoids are called
contractable. They are connected groupoinds where all diagrams
commute. It is easy to see that any contractable groupoid is
equivalent to 1.
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Example

sk(FinSet) = NatSet. The skeletal category of FinSet is
NatSet. The objects of NatSet are the sets of natural numbers
and the morphisms are all functions between them. There is an
inclusion inc : NatSet ↪−! FinSet that is full and faithful. The
functor inc is essentially surjective because for every finite set S
with |S | = n, there is an isomorphism between S and the set n̄.
Thus, it is an equivalence. Since no two elements of NatSet are
isomorphic, it is a skeletal category.
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Example

Every preorder (P,≤) has is a partial order (P0,≤0) that is its
skeletal category.

There is an inclusion inc : (P0,≤0) ↪−! (P,≤) that is full,
faithful and essentially surjective (i.e., every p ∈ P is in some
isomorphism class represented by an element in P0.)

The quasi-inverse of this map, π : (P,≤) −! (P0,≤0), is also
of interest. This function takes every element to its
isomorphism representative.

Notice that π ◦ inc = id(P0,≤0) but inc ◦ π need not equal id(P,≤).
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Example

Related to the previous example, is the idea that if two partial order
categories (P,≤) and (P′,≤′) are equivalent, then they are
isomorphic. This is because the only isomorphisms in either
category are identities.
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Example

The following equivalence is very useful way of thinking of partial
functions. Let f : S −! T be a partial function. Now consider the
total function f̂ : (S + {∗}) −! (T + {∗}) defined as follows

f̂(x) =


f(x) : if f(x) is defined

∗ : if f(x) is undefined, or if x = ∗.

Since f̂ takes the ∗ in one set to the ∗ in the other set, the function
is a map of pointed sets, i.e., ∗/Set. This describes a functor from
Par to ∗/Set that takes S to S + {∗}, and takes f to f̂ . This functor
is full and faithful. The functor going the other way is simpler. Take
a function of pointed g : (S, s) −! (T , t) and form the partial
function g′ : S −! T that is not defined when g(x) = t . Thus:
Par ≃ ∗/Set.
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Example

There is a functor F : KMat −! KFDVect that is defined
on a natural number m as F(m) = Km.

The functor takes the morphism A : m −! n (an n by m
matrix) to the linear transformation TA where TA is defined for
B ∈ Km is TA (B) = AB.

The functor is full and faithful. The fact that it is essentially
surjective follows from the fact that every finite dimensional
vector space of dimension n is isomorphic to Kn.

Hence we have shown that KMat ≃ KFDVect.

The quasi-inverse of F takes any m dimensional vector space
to m, and any linear transformation to the matrix that induces
it. Notice that the image of the functor F is a skeletal category
of KFDVect.
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Why are equivalences important?

When two categories are equivalent, they essentially have the
same structure and the functors respect that structure.

This means that if F : A −! B is an equivalence, and a is an
initial object in A, then F(a) is an initial object of B.

Even more, if F(a) is the initial object of B, then a is the initial
object of A.

We will see that this is true for most limits and colimits that we
met in Chapter 3.
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Foreshadowing

Chapter 4: Relationships Between Categories
Section 4.4: Adjunctions

Introduction
Definition I
Definition II
Definition III
Definition IV
Examples
Adjoint Equivalences
Composition of Adjunctions
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Introduction

If we weaken the notion of an equivalence of categories, we come
to the notion of an adjunction of categories. This weakening of
requirements explains why the concept of an adjunction of
categories arises very often. Whenever we waken a notion, the
new notion will be applicable in more instances (See Important
Categorical Idea.) This ubiquity gives adjunctions the status of
being one of the most important ideas in all of category theory.
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Introduction
The importance of this notion impels us to give four equivalent
definitions of an adjunction between two categories. Let A and B
be categories and L : A −! B and R : B −! A be functors. If
any of the four definitions are satisfied, then all four are satisfied,
and we say

L and R form an adjunction between A and B,

L is a left adjoint of R, and

R is a right adjoint of L .

We denote such an adjunction as R ⊢ L or L ⊣ R where the dash
always points to the left adjoint. We also denote this as

A

L

  

⊥ B.

R

``
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Definition I
The first definition is the easiest way to see an adjunction as a
generalization of equivalence.

Definition
(I) There are natural transformations (that need not be natural
isomorphisms as in an equivalence of categories) η : IdA =⇒ R ◦ L
called the unit and ε : L ◦ R =⇒ IdB called the counit. The unit
and counit must satisfy the following triangle identities

R
ηR +3 RLR

Rε

��

L
Lη +3 LRL

εL

��
R L .

The equal signs mean that the composition of the natural
transformations give the original functor.
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Similar to this, this, and this, we can express the adjunction as

A B.

L

idAR◦L ⇐=

R

idB L◦R⇐=
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Definition II

The second definition stresses the maps between the objects of
the two categories.

Definition
(II) There is an adjunction when there is a certain relationship
between the images of the functors that go from category to
category. In detail, for all a in A and b in B there is a natural
isomorphism of sets

HomB(L(a), b)
Φa,b

// HomA(a,R(b)).
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Definition II

Definition (Continued.)
Another way to say this is that there is a natural isomorphism
between the functors HomB(L( ), ) and HomA( ,R( )) where
both of the functors are of the form Aop ×B −! Set. We can
write the fact that these functions are in correspondence with each
other as follows

A

L

��

a // R(b)

B

R

OO

L(a) // b .

Because L occurs on the left of the isomorphism, it is called a left
adjoint. In contrast, R occurs on the right and is called a right
adjoint.
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Definition II

Definition (Continued.)

The fact that the isomorphism is natural (or satisfies the naturality
condition) means that for every f : a′ −! a in A and g : b −! b ′

in B, the following two squares commute:

HomB(L(a), b)
Φa,b

//

HomB(L(f),b)

��

HomA(a,R(b))

HomA(f ,R(b))

��

HomB(L(a′), b)
Φa′ ,b

// HomA(a′,R(b))

HomB(L(a), b)
Φa,b

//

HomB(L(a),g)

��

HomA(a,R(b))

HomA(a,R(g))

��

HomB(L(a), b ′)
Φa,b′

// HomA(a,R(b ′)).
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Definition II

Definition (Continued.)

For the sake of clarity, it pays to look at how the maps in the top
box work. Remember that the functor L is covariant. However the
functor HomB(L( ), b) is contravariant, which means it takes
f : a′ −! a to
HomB(L(f), b) : HomB(L(a), b) −! HomB(L(a′), b ′). In detail,
the left vertical set map takes a morphism h : L(a) −! b to

L(a′)
L(f)

// L(a) h // b .

The right set map takes h′ : a −! R(b) to

a′
f // a h′ // R(b).
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Definition III

The third definition deals with universal property of the round-trip
R ◦ L .

Definition
(III) There is a universal property that describes the relationship of
a starting object to the ending object of this round trip process.
Specifically, there exists a natural transformation η : IdA =⇒ R ◦ L
called the unit, which satisfies the following universal property: for
any morphism in A of the form f : a −! R(b) there is a unique
morphism in B of the form f ′ : L(a) −! b such that the following
triangle commutes:

a
ηa

//

f
''

R(L(a))

R(f ′)
��

L(a)

f ′

��

R(b) b .
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Definition IV

The fourth definition deals with universal property of the round-trip
L ◦ R. This definition is very similar to the previous one.

Definition
(IV) There exists a natural transformation ε : L ◦ R =⇒ IdB called
the counit, which satisfies the following universal property: for any
morphism in B of the form g : L(a) −! b, there is a unique
morphism in A of the form g′ : a −! R(b), such that the following
triangle commutes:

R(b) L(R(b))
εb // b

a

g′
OO

L(a).
g

77

L(g′)

OO
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Connections

Theorem
All four definitions of adjunctions are equivalent.

The book proves these equivalences very carefully.
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Examples

Now for the examples.

Example

We begin with one of the world’s simplest example of an
adjunction. We generalize what we saw here where we showed
that 1 ≃ 2I to show that 1 is adjoint to 2 = a // b . In detail,
there is a unique functor ! : 2 −! 1 and there is a functor
L : 1 −! 2 such that L(∗) = a. It is obvious that L◦! = id1 and that

Hom1(∗, !(b)) � Hom2(L(∗), b).

The set on the right has only one element.
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Examples

Example (Continued.)

Similarly, the functor ! has right adjoint R : 1 −! 2 such that
R(∗) = b. This can be seen as

Hom1(!(b), ∗) � Hom2(a,R(∗)).

Both cases are summarized as

2
! // 1.

L
⊥

��

R
⊥

^^

Notice that a is the initial object of 2, while b is its terminal object.
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Examples

Example

Consider the real numbers R and the integers Z as partial order
categories. There is an inclusion function inc : Z −! R. This
inclusion function has a left adjoint. Let us call the left adjoint
L : R −! Z and see if we can figure out what it is. The definition of
the adjunction says that for all n in Z and for all r in R, we have

HomZ(L(r), n) � HomR(r , inc(n)).

Notice that inc(n) is just n in the real numbers and that both of
these categories are partial orders, so the Hom sets are either the
empty set or a one-element set. This means that the isomorphism
can be interpreted as an if and only if statement:

L(r) ≤ n if and only if r ≤ inc(n) = n.
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Examples

Example (Continued.)
The right hand side is true exactly when r is less than or equal to
n. Consider the number 7.27. The following statements are true:

7.27 ≰ 5, 7.27 ≰ 6, 7.27 ≰ 7, 7.27 ≤ 8, 7.27 ≤ 9

This forces the left hand side to be true

L(7.27) ≰ 5, L(7.27) ≰ 6, L(7.27) ≰ 7, L(7.27) ≤ 8, L(7.27) ≤ 9

In other words L(7.27) = 8. That is, the left adjoint L is the functor
that for an input r, outputs the smallest integer larger than or equal
to r. That is the ceiling function. This shows us that inc ⊢ ⌈ ⌉. The
unit IdR =⇒ inc ◦ ⌈ ⌉ is the arrow showing that every real number r
is less than or equal to its ceiling, i.e., r ≤ ⌈r⌉. The counit of this
adjunction is the identity. That is, for every natural number n, it is a
fact that ⌈n⌉ ≤ n.
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Examples

Exercise

Show that the right adjoint of the inclusion function inc : Z −! R is
the floor function ⌊ ⌋ : R −! Z. Describe the unit and counit.

This past Example and this Exercise can be summarized as

Z �
�

inc
⊥ // R

⌈ ⌉

��

⌊ ⌋

⊥

^^
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Examples

These adjunctions are between partial order categories. Such
adjunctions have a special name:

Definition
An adjunction between two preordered or partially ordered
categories is called a Galois connection. Definition (II) of an
adjunction in the case of preorder or partially ordered categories
reduces to

L(a) ≤ b if and only if a ≤ R(b).
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Examples

Example

We saw that for every set B, there are two functors from Set to
Set: LB(A) = A × B and RB(C) = HomSet(B ,C). The functor LB

is left adjoint to RB . Using Definition (II) of adjoint functors
amounts to showing that

HomSet(LB(A),C) � HomSet(A ,RB(C))

which translates into

HomSet(A × B ,C) � HomSet(A ,HomSet(B ,C)).

We already saw that these two sets are isomorphic way back in
Chapter 1.
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Examples

Example (Continued.)

The counit of this adjunction will be very important. The counit is a
map ε : LB ◦ RB =⇒ IdSet. On set C this turns out to be

εC : HomSet(B ,C) × B −! C .

This morphism takes a set function f : B −! C and a b ∈ B, and
outputs f(b). This function is called the evaluation function. The
universal property of the counit says that for every set D and every
function g : D × B −! C, there is a unique
g′ : D −! HomSet(B ,C) such that

HomSet(B ,C) × B
εC // C

D × B

g

55

g′×idB

OO
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Examples

Example (Continued.)

This is true because for a g, we set g′ to be the function that takes
d to fd : B −! C, where fd is defined by fd(b) = g(d, b). This
satisfies the commutative triangle because for any (d, b) ∈ D × B,
we have that g(d, b) = εC(g′(d), b) = εC(fd , b). This says that the
function set, HomSet(A ,C), is the “best fitting” set to deal with all
evaluations.
The unit is a little less familiar and is called the co-evaluation
function. The unit is a natural transformation η : IdSet =⇒ RB ◦LB .
Its component on set A is ηA : A −! HomSet(B ,A × B), which
takes a ∈ A and outputs fa : B −! A × B. The function fa is
defined as b 7! (a, b). We leave the universal property of the
co-evaluation function for the reader.
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Examples

The following is a generalization of what we saw.

Example

For every category A there is a unique functor ! : A −! 1. The
right adjoint, R, of this functor would satisfy the following
requirement:

HomA(a,R(∗)) � Hom1(!(a), ∗) = {id∗}.

This means that R takes the single object of 1 to the object R(∗) of
A that has exactly one morphism from any object a of A to that
object. The functor R picks out a terminal object of A if it exists.
The adjoint will exist if and only if the terminal object exists. The
unit of the adjunction is the unique map from the object to the
terminal object. The counit is always the identity.
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Examples

Example (Continued.)

Similarly, the left adjoint of ! picks out an initial object of A if it
exists. We can summarize these two adjunctions with

A
! // 1.

Init
⊥

��

Term
⊥

^^

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 4.4: Adjunctions



Examples

Example

We saw that any category A with products has a functor
Prod : A ×A −! A that gives the product of objects and
morphisms.saw that for every category A there is a diagonal
functor ∆: A −! A ×A that takes objects and morphisms to their
double. These two functors are adjoint to each-other: ∆ ⊣ Prod. In
terms of Definition II, this amounts to

HomA×A(∆(c), (a, b)) � HomA(c,Prod(a, b)).

This can be written as

HomA×A((c, c), (a, b)) � HomA(c, a × b).
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Examples

Example (Continued.)

There is a similar coprodoct functor coprod : A ×A −! A. This
functor is left adjoint to ∆. We can summarize this as

A
∆ // A ×A.

Prod
⊥

aa

Coprod

⊥
}}
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Examples
The following adjunction is a paradigm for many examples of
free-forgetful adjunctions.

Example

There is a forgetful functor U : Monoid −! Set that takes every
monoid to its underlying set. We met the free monoid functor
F : Set −!Monoid that takes every set S to S∗. We show that
F is left adjoint to U. This means that for all sets S and for all
monoids M, there is the following natural isomorphism:

HomMonoid(F(S),M) � HomSet(S,U(M)).

Given any set map f : S −! U(M), let f ′ : F(S) −! M be defined
as follows: for an element w = s1s2s3 · · · sn of the free monoid,
f ′(w) = f ′(s1s2s3 · · · sn) = f(s1)f(s2)f(s3) · · · f(sn). For a monoid
homomorphism g : F(S) −! M, set the corresponding
g′ : S −! U(M) to be defined by g′(s) = g(s).
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Examples

Example (Continued.)

The unit of this adjunction at set S is the set function
ηS : S −! UF(S) which includes every letter as the one-element
word. It will be beneficial for us to examine the free monoid on one
object, say ∗. The monoid will consist of ∗, ∗∗, ∗ ∗ ∗, . . .. There will
also be the empty set as the unit. This monoid is isomorphic to the
monoid of natural numbers (N,+, 0). The universal property of the
unit η can be expressed with the diagram

{∗}
η{∗}
//

f
))

U(F({∗})) = U(N)

U(f ′)
��

F({∗}) = N

f ′

��

U(M) M.
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Examples

Example (Continued.)

This says that for every set function f : {∗} −! U(M) — which is a
function that picks out an element m of M — there is a monoid
homomorphism f ′ : N −! M such that the above triangle
commutes. The output of the function f ′ is m, mm, mmm, . . . . Let
us restate this in a way that will be useful. The free monoid on one
object will have the property that for every monoid M and every
element m in M, there is a unique morphism from the free monoid
on one object to M that takes ∗ to m.
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Examples

Example (Continued.)

Let us summarize the properties of F({∗}) in three different ways.

The monoid F({∗}) is the free monoid on one generator.

For every object m in M, there is a unique morphism
f : F(∗) −! M such that f(∗) = m.

When we substitute S = {∗} in the main isomorphism here,
we get

HomMonoid(F({∗}),M) � HomSet({∗},U(M)) � U(M).

This means that there is an isomorphism
HomMonoid(F({∗}),M) � U(M) where U(M) is the set of
elements of M.

When we discuss the free functor of an adjunction we are
describing another way of talking about the universal property of a
structure. This example will be fundamental in coherence theory.
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Examples

The following example will be the paradigm of the next few
examples and exercises. The details are worked out for the Cat
example because that is our primary interest.

Example

Consider the categories Cat and Set. There is a forgetful functor
U : Cat −! Set that takes a category A to the set of objects of A
and forgets the morphism and the rest of the structure of the
category. It also takes a functor and outputs its underlying set
function on objects.
Functor U has a left adjoint d : Set −! Cat which takes any set
to its “discrete” category and any set function to its “discrete”
functor. The name “discrete” is a vestige of topological language.
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Examples

Example (Continued.)
The adjunction is

HomCat(d(S),A) � HomSet(S,U(A)).

The right side of this isomorphism consists of all set functions from
S to U(A). Imagine a set function f : S −! U(A). This will
correspond to the functor f̂ : d(S) −! A. In other words, f̂ is the
same function as f if we ignore the maps in A.
The U functor also has a right adjoint, c, for “continuous.” This
functor corresponds to the “indiscrete” topology. The functor takes
a set S and forms the category that has the elements of S as the
objects and exactly one morphism between any two objects. The
adjunction is

HomCat(A, c(S)) � HomSet(U(A),S).
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Examples

Example (Continued.)

A function f : U(A) −! S does not have to worry about the arrows
in A because there are no arrows in U(A). Such a function will
correspond to a functor f̂ : A −! c(S) because for all a and a′ in
A there will always be exactly one arrow f̂(a) −! f̂(a′) in c(S)
where all arrows a −! a′ can go to.
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Example (Continued.)

But the story is not over. The left adjoint d has a left adjoint. There
is a functor π0 (again, a vestige of topological language) that takes
a category A to π0(A), the set of components of A. In detail, if
there exists a morphism from a to a′ in A, then these two elements
are in the same component. Let us examine the adjunction:

HomCat(A, d(S)) � HomSet(π0(A),S).

Since there are no nonidenity morphisms in the category d(S), A
functor F : A −! d(S) will take a morphism f : a −! a′ in A to an
identity morphism in d(S). This will correspond to a set function
F̂ : π0(A) −! S.
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Example (Continued.)

We can summarize all the functors in this example as

Cat U
⊥ //

π0

⊥

��

Set.

d

}}

c
⊥

aa
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Examples

Example (Continued.)

Let us list off the units and counits of these adjunctions.

For the U ⊢ d adjunction, the unit ηS : S −! U(d(S)) takes a
set S to the same set. The counit εA : d(U(A)) −! A is the
inclusion of a category A stripped of its arrows into the
original category A.

For the c ⊢ U adjunction, the unit ηA : A −! c(U(A)) is an
identity-on-objects functor from the category A onto the
category with the same objects but with exactly one morphism
between any two objects. The counit εS : U(c(S)) −! S
takes a set S to the same set.

For the d ⊢ π0 adjunction, the unit ηA : A −! d(π0(A)) takes
a category A to the discrete category of its components. The
counit εS : π0(d(S)) −! S on a set S is the identity on the
set, because the components of a discrete category are
exactly the same as the elements of the set.
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Exercise
Graphs are simpler than categories. Use the last example to
define the functors and show that the following adjunctions hold
between graphs and sets.

Graph
U
⊥ //

π0

⊥

��

Set.

d

||

c
⊥

bb

(Hint: The functors and proofs are almost exactly the same as in

the previous example.)
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Example

Similar to the above Example and Exercise, there is the following
adjunctions between topological spaces and sets.

Top
U
⊥ //

π0

⊥

��

Set.

d

||

c
⊥

bb
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Example (Continued.)

The U functor takes a topological space and forgets the topological
structure. The output of U is simply the underlying set. The
functors d and c take a set to the topological space with the
discrete and indiscrete (continuous) topology, respectively (see
Example ??.) The fact that they satisfy the universal properties is
exactly the contents of Theorem ??. The functor π0 takes a
topological spaces and outputs the set of connected components
of that space.
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Example

There is a forgetful functor U : Cat −! Graph. This functor has
a left adjoint L : Graph −! Cat. The functor L takes a graph G
to a category L(G), which will be called the “free category over G”.
Such a category will have the same objects as G but with more
edges added in. In order to make a graph into a category, an
identity has to be added in for each object, and a compositions
have to be added in for every composable pair of morphisms. In
detail, L(G) is a category with the same objects as G and the
morphisms are the set of paths in G. Another way to say this is
that the morphisms are all composible strings of morphisms in the
graph. We might envision them as

x1 // x2 // x3 // · · · // xn.
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Example (Continued.)

Included are paths of length zero which correspond to identity
morphisms. Composition is simply concatenating two such strings
of arrows. Composition with paths of length zero gives the original
path, thus insuring that the paths of length zero are the identities.
The composition of paths is an associative operation. Hence L(G)
is a category.
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Example (Continued.)

In order to get a feel for this functor, let us examine this functor on
two different graphs.

The category L(∗) where ∗ is the one-object graph with no
arrows. The only morphism added in is the path of length 0,
i.e., the identity. This category will be 1, the one-object
category with one identity.

In stark contrast, consider the graph ∗′ which consists of one
object and one arrow from the single object to itself.

∗.
��
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Example (Continued.)

Then L(∗′) will consist of all possible compositions of that one
morphism and will look like

∗.

1

0

2

...

There is one morphism for every natural number. This one-object
category is the monoid of natural numbers.
This L functor is very similar to the free monoid functor from here.
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Example

We met functors between a partial order and a preorder. These
functors can be boosted up to the category of all partial orders and
all preorders. There is an inclusion Inc : PO ↪−! PreO. What
about going the other way? Let (P,≤) be a preorder. There is a
relation ≈ on the objects of P as follows p ≈ p′ if and only if p ≤ p′

and p′ ≤ p. This is clearly an equivalence relation. We can form a
partial order (P/ ≈,⊑) whose objects are equivalence classes of
objects of P and [p] ⊑ [p′] if and only if p ≤ p′. This defines a
functor Π: PreO −! PO. Notice that Π ◦ Inc = IdPO but Inc ◦ Π
is not equal or isomorphic to IdPreO. In fact, the map
IdPreO =⇒ Inc ◦ Π is the unit of an adjunction with Inc ⊢ Π. One
can see the adjunction by noticing that any order preserving map
of partial orders f : Π(P) −! P′ has a related order preserving
map of preorders f̂ : P −! Inc(P′), and vice versa. The map f̂ will
take isomorphic elements of P to the element that f took them to.
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Examples
Here is an interesting example about prime numbers.

Example

Consider the functor L : N −! N which is defined by L(n) = Pn,
the nth prime number. So

L(0) = 0, L(1) = 2, L(2) = 3, L(3) = 5, L(4) = 7, . . .

This functor has a right adjoint R : N −! N defined as
R(n) = π(n), the number of primes less than or equal to n. So

R(0) = 0,R(1) = 0,R(2) = 1,R(3) = 2,R(4) = 2, . . .

The adjunction says that for all integers m and n,

Pm ≤ n if and only if m ≤ π(n).

The unit is actually an equality: m = π(Pm). However, the counit is
generally the inequality Pπ(n) ≤ n.
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Properties of Adjunctions

Let us prove some properties about adjunctions. First off, we
would like to put the notion of an adjunction in the context of
equivalence of categories. We pointed out that an adjunction is a
weakening of the notion of an equivalence. That is, every
equivalence is a special type of adjunction where the unit and the
counit are isomorphisms. But this is not really true. After all, our
definition of an equivalence never required the two functors to
satisfy the triangle identities. We can rectify the situation by calling
an equivalence that also satisfies the triangle identities (and hence
all four definitions of an adjunction) an adjoint equivalence. This
can be visualized as the Venn diagram on the next slide.
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Properties of Adjunctions

equivalenceadjunction

isomorphism

adjoint
equivalence

Adjunctions, equivalences, and adjoint equivalences.
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Properties of Adjunctions

The following theorem relates the functors in the right circle with
the functors in the intersection.

Theorem
Every equivalence can be turned into an adjoint equivalence.
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Properties of Adjunctions

There is another connection between adjunctions and
equivalences. Embedded within every adjunction sits an
equivalence of categories.

Theorem

For every adjunction L : A −! B and R : B −! A with R ⊢ L,
there are subcategories (A) ↪−! A and (B) ↪−! B such that L
and R restricted to these subcategories form an equivalence of
categories.
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Properties of Adjunctions

Theorem (Continued.)
We can combine this idea with what we saw here to get the

following three layers: A

L

''
⊥ B

R

gg

(A)

L |

((?�

OO

≃ (B)
?�

OO

R |

hh

sk(A)

L̂
))?�

OO

� sk(B).
?�

OO

R̂

ii

In the top level, the unit and the counit are morphisms, in the
middle level, the unit and the counit are isomorphisms, and on the
bottom level, the unit and the counit are identity morphisms.
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Properties of Adjunctions

Proof.

Simply let (A) be the full subcategory of A consisting of objects
where the unit is an isomorphism, and let (B) be the full
subcategory of B consisting of the objects where the counit is an
isomorphism. For the skeletal category level, we have to use a
modification of L and R because those functors might not take
skeletal objects of one category to skeletal objects of the other
category. This can easily be done. □
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Properties of Adjunctions

Theorem

The composition of right adjoints is a right adjoint. Similarly the
composition of left adjoints is a left adjoint.
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Properties of Adjunctions

Proof.
Consider the following two right adjoints.

A

L

  

⊥ B

L ′

  

R

``
⊥ C.

R′

``

Then we have

HomC(R ′R(a), c) � HomB(R(a), L ′(c)) � HomA(a, LL ′(c)),

where the left natural isomorphism follows from the R ′ ⊢ L ′

adjunction and the right natural isomorphism follows from the
R ⊢ L adjunction. The proof for left adjoints is very similar. □
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Properties of Adjunctions

Theorem

A right adjoint to a functor is unique up to a unique isomorphism.
That is, if R ⊢ L and R ′ ⊢ L, then R is isomorphic to R ′ by a unique
isomorphism. There is a similar dual statement about the
uniquness of left adjoints.
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Properties of Adjunctions

Proof.
From the adjunctions we have

Hom(a,R(b)) � Hom(L(a), b) � Hom(a,R ′(b)).

Setting a = R(b), this becomes

Hom(R(b),R(b)) � Hom(L(R(b)), b) � Hom(R(b),R ′(b)).

The first Hom set contains idR(b). The morphism in the third Hom
set that corresponds to this is the component τb of a natural
transformation τ : R =⇒ R ′. Similarly, setting a = R ′(b) in the first
line gives

Hom(R ′(b),R(b)) � Hom(LR ′(b), b) � Hom(R ′(b),R ′(b)).

□
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Properties of Adjunctions

Continued.
The third Hom set contains idR′(b). The morphism that
corresponds to this in the first Hom set is the b component to τ−1.
The naturality of τ and τ−1 follows from the naturality of the
isomorphisms of the above Hom sets. To see that τ is the inverse
of τ−1, consider the following commutative diagram taken from the
relevant parts of the above isomorphisms.

idRb
� //

_

��

τb_

��

Hom(R(b),R(b)) � //

Hom(τ−1
b ,R(b))

��

Hom(R(b),R ′(b))

Hom(τ−1
b ,R′(b))

��

Hom(R ′(b),R(b))
�

// Hom(R ′(b),R ′(b))

τ−1
b

� // τ−1
b τb = idR′b .

There is a similar square to show that τbτ
−1
b = idRb . The

uniqueness of τ follows from the fact that these sets are
isomorphic and that any such isomorphism has to go to the identity
morphism. □Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 4.4: Adjunctions



Properties of Adjunctions

Exercise

Show that if L : A −! B is left adjoint to R : B −! A, then
Lop : Aop −! Bop is right adjoint to Rop : Bop −! Aop .

HomBop (b , Lop(a)) = HomB(Lop(a), b) = HomB(L(a), b) �

HomA(a,R(b)) = HomA(a,Rop(b)) = HomAop (Rop(b), a).
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Properties of Adjunctions

The following definition occurs often.

Definition
Let A be a full subcategory of B, then A is called a reflective
subcategory if the inclusion has a left adjoint

A �
w

44⊥ B
tt

Dually, a full subcategory is called a coreflective subcategory if
the inclusion has a right adjoint.
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Example
We close this section with an important adjunction from linear
algebra.

Example

There is a forgetful functor U : KVect −! Set that takes a
complex vector space and outputs its underlying set. The functor
has a left adjoint F : Set −! KVect called the free vector space
functor that takes a set and outputs the vector space whose basis
is the elements of the set. For example, if the set
S = {s1, s2, . . . , sn} is a finite set, then the elements of F(S) look
like this

k1s1 + k2s2 + · · ·+ knsn

where the ki are elements of K. The addition of such elements
combines like elements. Scalar multiplication is done as

k · (k1s1 + k2s2 + · · ·+ knsn) = kk1s1 + kk2s2 + · · ·+ kknsn.
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Example

Example (Continued.)

The unit of the adjunction at set S is η : S −! U(F(S)), which
takes element s to 1s. This is called “insertion of generators.” It is
easy to see the universal property of the unit and we leave it to the
reader. The functor F is essentially surjective because every vector
space is a free vector space. (It is also faithful, but it is not full.)
The restriction of F to finite sets outputs finite dimensional vector
spaces. Notice that when one forgets the vector space structure of
a finite dimensional complex vector space, one does not
necessarily get a finite set. This means that there is no forgetful
functor from CFDVect to FinSet
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Example

Example (Continued.)
This all can all be summarized as

Set

F
))

⊥ CVect

U

ii

FinSet
F //

?�

OO

CFDVect.
?�

OO
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Foreshadowing

Chapter 4: Relationships Between Categories
Section 4.5: Exponentiation and Comma Categories

Exponentiation
Comma Categories
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Foreshadowing

In this section we will meet various operations on categories and
functors. We start off discussing functor categories which are the
bases of exponentiation. We will also meet comma categories,
which are ways of making the morphisms of one category into the
objects of another category.
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Exponentiation

We have seen that given categories A and B, we can form
category A ×B. Here we will take two categories and form their
functor category. This is analogous to taking two sets, S and T ,
and forming the set of functions TS = HomSet(S,T).

Definition
Given categories A and B, there exists the functor category
written BA or HomCat(A,B), whose objects are all functors from
the category A to the category B, and whose morphisms are all
natural transformations between those functors.

This fact that for any two objects in Cat, A and B, the Hom set,
HomCat(A,B), has the structure of a category means that Cat is
a closed category.
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Exponentiation

Let us look at some simple examples.

Example

If A is 1, the category with a single object and a single identity
morphism, then the objects of B1 are functors that pick out a
single object of B. The natural transformations essentially
pick out morphisms of B. We have B1 � B.

If A is the category 2◦, the discrete category with two objects
and no non-identity morphisms, then a functor 2◦ −! B picks
out two objects of B. The natural transformations are pairs of
morphisms in B. This means that

B2◦ � B ×B.
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Exponentiation

Example

If A = 2, the category with two objects and a morphism
between the two objects, then a functor 2 −! B picks out a
morphism in B. Consider a functor that picks out the
morphism f : b1 −! b2 and a functor that picks out the
morphism f ′ : b3 −! b4, then a natural transformation from
the first functor to the second functor amounts to a
commutative diagram

b1
g

//

f
��

b3

f ′

��

b2 g′
// b4.

Composition corresponds to horizontal composition of natural
transformations and can be seen as pasting one box on top of
the other. This functor category is called the arrow category
of B.Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 4.5: Exponentiation and Comma Categories



Exponentiation

Example

Let A be the category ∗
//

//
∗. Since names of

objects and morphisms do not really matter, we might view

this category as A
src //

trg
//
V where A stands for arrows,

V stands for vertices, src stands for source, and trg stands for
target. Then the objects in the functor category SetA are
functors F : A −! Set that pick out two sets, F(A) and F(V),
and two set morphisms F(src) : F(A) −! F(V) and
F(trg) : F(A) −! F(V). This is nothing more than a directed
graph. Natural transformations are exactly directed graph
homomorphisms. To summarize,

Set ∗
//
// ∗ � Graph.
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Exponentiation

Example

We can take the previous example and go further. Consider
the category

A = A
src //

trg
//
V // LV .

Then the category SetA is a directed graph with an added
function from the vertices of the graph to a set of labels. This
will give the category of graphs with labeled vertices. We also
have directed graphs with labeled arrows and labeled vertices:

A = LA Aoo

src //

trg
//
V // LV .
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Exponentiation

Example

We already saw that if A is a monoid, M, which is thought of
as a one-object category, then a functor F : M −! Set is
going to pick out a set S, and for every morphism m : ∗ −! ∗,
there will be a set function F(m) : S −! S. We also saw that
natural transformations are homomorphisms of M-sets. Thus
SetM is the category of M-sets. Similarly, if G is a group,
thought of as a one-object category, then SetG is the
category of G-sets.
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Exponentiation

Example
In particular, when the monoid M is the natural numbers N,
then SetN is the category of N-sets. An object in this category
is a set S with maps

S
F0 // S

F1 // S
F2 // · · · .

We can think of these diagrams as describing how systems
change in discrete time. The element s ∈ S in time t follows
the map to become a member of S in time t + 1. The objects
in this category are called dynamical systems or discrete
time dynamical systems
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Exponentiation

Example

We can also talk about the monoid R of real numbers. In this
case, SetR becomes continuous-time dynamical systems.
It is harder to draw a diagram of such a system. There is a set
S, and for every r ∈ R there is a set function tr : S −! S.
Many physical systems can be described by such dynamical
systems.

When A = 0, the empty category, then for any category B,
we have B0 = 1, because there is exactly one functor from
the empty category to any other category.

To what extent can any locally small category A be seen as
an functor category? We will see in the Section on the Yoneda
Lemma that every small category A can be embedded in a
functor category SetA

op
.
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Central Idea

Important Categorical Idea

Exponentiation Is Central.

Exponentiation is very important throughout category theory.

When we examine BA, we might think of A as a “diagram” or
a “shape” and think of B as a context where the diagrams
take place.

Other ways to think of A is as the “ideal model,” “syntax,” or
“cookie cutter” and every functor F : A −! B describes a
“semantic model” of the ideal in B or the “cookie” in B.
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Central Idea

Important Categorical Idea (Continued.)

Exponentiation Is Central.

Sometimes we will look at special types of functors
F : A −! B that preserve some of the structures of A and B
(e.g. product preserving functors, colimit preserving functors,
or monoidal preserving functors, etc.)

Another fundamental idea is the relationship between A (the
ideal) and BA (the collection of models of the ideal.)

It is a particularly important to look at the case when
B = Set. We will examine the relationship between A and
SetA

op
when we talk of the Yoneda Lemma.
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Exponentiation
How do functor categories relate to each other? We saw that for
any category A, there are covariant and contravariant functors
HomA(a, ) and HomA( , a), respectively. Let us spell out the
details for the case when A = Cat. For any category C, the
functor F : B −! B′ induces a functor

F∗ = HomCat(C,F) : BC −! B′C

which is defined as

H : C −! B 7! F ◦ H : C −! B −! B′.

For any category C, the functor G : A −! A′, induces a functor

G∗ = HomCat(G,C) : CA
′

−! CA

which is defined as

H : A′ −! C 7! H ◦ G : A −! A′ −! C.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 4.5: Exponentiation and Comma Categories



Exponentiation

Let us go through some examples of these induced functors.

Example

Let A = 2◦. Consider the functor H : 1 −! 2◦ that takes the
single object in 1 to the first object in 2◦. The functor H∗ takes
a functor F : 2◦ −! B to a functor F ◦ H : 1 −! 2◦ −! B,
which outputs the first object that F chose. This is essentially
the projection functor π1 : B ×B −! B. The functor
H′ : 1 −! 2◦ that chooses the second object induces the
other projection function, i.e., H′∗ = π2.
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Exponentiation

Example

Let A = A
src //

trg
//
V . Consider the functor J : 1 −! A

that takes the single object in 1 to the V in A. Any functor
F : A −! Set is a graph. The composition with J gives a
functor F ◦ J : 1 −! A −! Set which picks out the set of
vertices of the graph. So J∗ is the forgetful functor from the
category Graph to Set that gives the underlying set of
vertices. There is a similar functor that gives the underlying
set of arrows.

Let K : 1 −! M be a functor that takes the single object in the
one-object category 1 to the single object in the one-object
category of the monoid M. The functor K ∗ : SetM −! Set1

takes an M−set to the underlying set without the action, i.e.,
K ∗ forgets the action of the M-set.
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Exponentiation

Example

Let inc : N ↪−! R be the inclusion of the one-object monoid of
natural numbers to the one-object monoid of real numbers.

The induced functor inc∗ : SetR −! SetN takes a continuous
time dynamical system R −! Set to the discrete time
dynamical system N −! R −! Set.

The discrete system picks out those parts of the continuous
system that correspond to whole numbers.

One way to think of this is that there is some continuous
dynamical system, but an experimenter looks at the system at
separate time clicks and records the observations.

Much of the physical sciences is done this way.
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Exponentiation

Example

There is another example that will be extremely important for the
next section and hence worth spending some time spelling out all
the ingredients. For every category A, there is a unique functor
! : A −! 1. This functor induces a functor which we denote ∆

∆ =!∗ : B1 −! BA.

In detail, ∆ is defined on objects as

F : 1 −! B 7! ∆(F) = F◦! : A −! 1 −! B.

That is, if F(∗) = b (where ∗ is the single object in 1), then
∆(F) = F◦! : A −! 1 −! B is going to take every object of A to
b. A morphism f : a −! a′ in A is going to go to the identity
morphism idb : b −! b.
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Exponentiation

Example

For example, if the category is A = 2◦ then any functor
F : 1 −! B that picks out an element b will go to the functor
∆(F) = F◦! : 2◦ −! 1 −! B. This will send each element of 2◦ to
b. This is exactly the diagonal morphism ∆(b).
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Exponentiation

Now let us generalize from 2◦ to an arbitrary category A. If the
category A is

a3 // a9
ss

tta2

((

>>

a42,

FF

then one can imagine the image of ∆(b) as in the next slide.
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Exponentiation

b
idb

// b
idb

tt

idb
ttb

idb
''

idb

??

b .

idb

GG

Of course the image of the functor is simply one object and the
identity map, however, we can think of the image as above.
Although we are overloading the word, we call ∆ the diagonal
functor. It is similar to the diagonal functor we saw earler where
∆: A −! A ×A. The old one is defined as ∆(a) = (a, a). This
means that in each position of the output has the value is a. The
functor ∆: B −! BA also outputs the same value.
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Comma Categories

Now for constructions that make the morphisms of one category
into the objects of another category.

Definition

Given two functors

A
F // C B

Goo

we can form the comma category (F ,G), sometimes also written
(F # G). The objects of this category are triples (a, f , b) where a is
an object of A, b is an object B and f : F(a) −! G(b) is a
morphism in C.
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Comma Categories

Definition

A morphism from (a, f , b) to (a′, f ′, b ′) in (F ,G) consists of a pair
of morphisms (g, h) where g : a −! a′ in A and h : b −! b ′ in B
such that the following square commutes:

F(a) f //

F(g)
��

G(b)

G(h)
��

F(a′)
f ′

// G(b ′)

.

Composition of morphisms come from the fact that two commuting
squares placed one on top of the other, also commute. The identity
morphisms are obvious.
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Comma Categories

Some examples of comma categories are familiar already.

Example

If A = 1 and F : 1 −! C picks out the object c0 and B = C

with G = IdC as in

1
F // C C

IdCoo

then the comma category (F ,G) is the coslice category c0/C.

If B = 1 and G : 1 −! C picks out the object c0 and A = C

with F = IdC as in

C
IdC // C 1

Goo

then the comma category (F ,G) is the slice category C/c0.
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Comma Categories

Some examples of comma categories are familiar already.

Example

If A = B = C and F = G = IdC as in

C
IdC // C C

IdCoo

then the comma category (IdC, IdC) is nothing more than the
arrow category C−! .
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Comma Categories

There are forgetful functors U1 : (F ,G) −! A and
U2 : (F ,G) −! B which are defined on objects as follows: functor
U1 takes (a, f , b) to a and U2 takes (a, f , b) to b. This means that
for slice categories a/A there is a forgetful functor to A. There are
similar forgetful functors for coslice categories.
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Comma Categories

How do comma categories relate with each other? First let us look
at slice categories. Consider slice categories C/c and C/c′. A
morphism g : c −! c′ in C will induce a functor C/c −! C/c′

that takes object f : a −! c of C/c to g ◦ f : a −! c −! c′ in
C/c′. Morphisms in C/c can be dealt with in the same manner.
There are similar statements about coslice categories.
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Comma Categories

The following theorem shows how general comma categories
relate to each other.

Theorem
Given functors

A
F // C B

Goo

and

A
F ′ // C B,

G′oo

there are comma categories (F ,G) and (F ′,G′).
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Comma Categories

Theorem (Continued.)

Any functor H : C −! C′ where the following two triangles
commute

A
F //

F ′

��

C

H

~~

C′ B

G

OO

G′
oo

induces a functor Ĥ : (F ,G) −! (F ′,G′) that is defined as

(a, f : Fa −! Gb , b) 7! (a,Hf : HFa −! HGb , b).

On morphisms, Ĥ takes (f , g) to (f , g), i.e., the Hom sets are
isomorphic.
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Comma Categories

Theorem (Continued.)

Furthermore, if there are adjoint functors R : C −! C′ and
L : C′ −! C with R ⊢ L and the corresponding triangles commute,

A
F //

F ′

��

C

R

��

C′

L
⊢

EE

B

G

OO

G′
oo

then their induced functors are also adjoint

(F ,G)

R̂
))

⊤ (F ′,G′).

L̂

ii
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Foreshadowing

Chapter 4: Relationships Between Categories
Section 4.6: Limits and Colimits Revisited

Cones and Cocones
Limits and Colimits
Preserve and Reflect
Completion and Cocompletion
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Cones and Cocones

With the knowledge of natural transformations and adjoint functors,
we can see limits and colimits in a new light. Let D be a category
which we employ as a diagram in an exponent. We call it a
diagram category or a shape category. For example, category
D might look like

•

��

•
//
•

44

''

oo

•.
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Cones and Cocones

For a category B, the category BD is the collection of all functors
from D to B and natural transformations between them. For
example, the image of a typical functor F : D −! B might look like
this:

d

f ′

��

a
g

//
c

f

55

h
''

g′
oo

a.
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Cones and Cocones

There is a diagonal functor ∆: B −! BD, which takes every
b ∈ B to the diagram with all the objects being b and all the
morphisms being idb . For the last diagram, ∆(b) looks like this:

b

idb

��

b
idb //

b

idb

55

idb
&&

idb

oo

b .
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Cones and Cocones

A natural transformation from the functor ∆(b) to a functor
F : D −! B (i.e. a morphism in the category BD) is a
commutative diagram that looks like this

b

��

idb

��

b

��

idb //

b

��

idb

55

idb
&&

idb

oo

b

��

d

f ′

��

a
g

//
c

f

44

h
''

g′
oo

a′.

The vertical morphisms are the components of the natural
transformation.
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Cones and Cocones

We can shorten this to

b

����

��

)) d

f ′

��

a
g

//
c

f

44

h
''

g′
oo

a′.
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Cones and Cocones

Definition

A cone over F : D −! B with base b is a natural transformation
in BD from ∆(b) to F. We call such a natural transformation.
Consider when there are two cones over F, ∆(b) =⇒ F and
∆(b ′) =⇒ F. A map from the cone with base b to the cone with
base b ′ is a map b −! b ′ such that all the expected diagrams
commute.

b

��

�� ��

��

$$

b ′

����

��

** d

f ′

��

a
g

//
c

f

44

h
''

g′
oo

a′.
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Cones and Cocones

Definition
With this concept of a morphism between cones over F, we define
the category of cones over F : D −! B, which we denote
Cone(F).
There is a dual notion of a cocone over F with base b, which is a
natural transformation in BD from F : D −! B to ∆(b). There is
an obvious definition of a morphism between cocones and the
category of cocones over F, denoted Cocone(F).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 4.6: Limits and Colimits Revisited



Cones and Cocones

A formal way of constructing the category of cones for a functor F
is to consider the comma category of the following two functors:

B
∆ // BD 1

ConstFoo

where the right functor chooses the functor F . Similarly, the
category of cocones of F is the comma category of

1
ConstF // BD B

∆oo .
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Limits and Colimits

With the category of cones, we can talk about the “best fitting”
cone.

Definition

The limit of a diagram F : D −! B is the terminal object in the
category Cone(F) of cones over F. That is, it is the cone over F
with the property that every cone has a unique map to it. In detail,
the limit is an object Lim(F) of B and a morphism
Lim(F) −! F(d) for every d in D. The obvious compositions of
morphisms commute.
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Limits and Colimits

Definition
The colimit of a diagram F : D −! B is the initial object in the
category Cocone(F) of cocones over F. That is, it is a cocone
over F with the property that there is a cocone map from it to every
cocone over F. Again, the colimit is an object Colim(F) of B and
maps F(d) −! Colim(F) for every d in D. The obvious
compositions of morphisms commute.

From the vantage point of looking at limits as terminal objects in
the category of cones, one easily sees that a limit has the same
uniqueness up to a unique isomorphism as the terminal object of a
category.
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Limits and Colimits
Let us elaborate the details of this definition. A cone is a natural
transformation ∆(b) =⇒ F . The limit of F is an object Lim(F) in
the category B. A cone of F with the limit as a base of the cone is
a natural transform ∆(Lim(F)) =⇒ F . Saying that the limit is the
terminal cone means that for every cone ∆(b) =⇒ F there is a
unique morphism b −! Lim(F). In terms of Hom sets, this
become a statement about adjoint functors:

HomBD(∆(b),F) � HomB(b , LimF).

There is a similar analysis of coloimits and we get

HomBD(F ,∆(b)) � HomB(ColimF , b).

Both of these adjoint functors can be encapsulated as

B
∆ // BD.

Lim
⊥

__

Colim
⊥

��
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Preserve and Reflect

Let us examine properties of limits and colimits. First a definition.

Definition
Let G : B −! C be a functor. Notice that for any diagram
F : D −! B, there is also an induced diagram G ◦ F : D −! C.
We say G preserves limits if for all F : D −! B, G takes the limit
of F to the limit of G ◦ F. In symbols, G(Lim(F)) = Lim(G ◦ F). We
say G reflects limits if for all F : D −! B and any cone
λ : ∆(b) =⇒ F, the following is true: G(λ) is a limit of G ◦ F implies
λ is a limit of F.
There are similar definitions about preserving and reflecting
colimits.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 4.6: Limits and Colimits Revisited



Preserve and Reflect

Theorem
Right adjoints preserve limits and left adjoints preserve colimits.

Proof.
Consider this cone and its image under a right adjoint functor while
looking at the proof.

B

L(c)

��

�� ��

��

��

b

����

��

$$
d

��

a
//

k

::

$$

oo

a′

C

c

��

�� ��

��

��

R(b)

����

��

%%

R(d)

��

R(a)
//
R(k)

99

%%

oo

R(a′)

□
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Preserve and Reflect

Continued.
Let R : B −! C be a right adjoint to L : C −! B and
F : D −! B.

The diagram of F is at the bottom left of the figure.

Assume b is the limit of F in B.

Apply R to the bottom left to get the diagram on the bottom
right.

Our aim is to show that R(b) is the limit of the diagram on the
bottom right.

By functoriality, there is a map from R(b) to every element of
the diagram.

□

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 4.6: Limits and Colimits Revisited



Preserve and Reflect

Continued.

Furthermore, for any c in C with maps c −! R(x) where x is
any element of the diagram on the bottom right, there is, by
adjointness, a map L(c) −! x on the left.

Since b is the limit on the left, by the universal property of the
limit, there is a unique map L(b) −! c making all the
diagrams commute.

By adjointness again, there is a unique map c −! R(b) on
the right ensuring that R(b) is the limit.

□
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Completion and Cocompletion

Remark
It is easy to see that an equivalence of categories is both a right
and left adjoint. Such functors preserve and reflect limits and
colimits. However there is something very strange with equalizers
and coequalizers. Consider an equivalence of categories
F : A −! B. Imagine it works as follows:

A
F // B

a f // b
p
�
// c

g
//

h
// d F(a)

F(f)
//
F(b)
=

F(c)

F(g)
//

F(h)
// F(d)
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Completion and Cocompletion

Remark (Continued.)

In the category A there is an isomorphism p : b −! c. The functor
F can have F(b) and F(c) be the same object of B and
F(p) = idF(b) = idF(c). Furthermore, it could be that in the
category B, the morphism F(f) = F(pf) is the equalizer of F(g)
and F(h). So we have that F is an equivalence of categories, the
image F(f) = F(pf) is an equalizer of F(g) and F(h), (pf is an
equalizer of g and h), but f is not an equalizer of g and h. (The
equivalence still reflects equalizers because in our definition of
reflecting limits, we assumed the cone exists in A already. Here
we are talking of just equalizers in the target and not formed in the
source.)
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Completion and Cocompletion

Exercise
Show that left adjoints preserve colimits.
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Completion and Cocompletion

Definition

A category has finite limits or is finitely complete if it has
limits of finite diagrams.

A category has limits or is complete if it has all limits of small
diagrams (the collection of objects and maps are sets).

We similarly define a category that has finite colimits or is
finitely cocomplete, or is cocomplete.
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Completion and Cocompletion

Theorem
A category is complete if and only if it has all products and
equalizers. A category is cocomplete if and only if it has all
coproducts and coequalizers.
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Central Idea

Important Categorical Idea

The Many Ways of Describing Structures.

We have already seen three related ways of describing
categorical structures: (i) universal properties, (ii) limits and
colimits, and (iii) adjoint functors.

Each of these is important in its own right, and we will
continue to talk about each of the three.

However, it is important to realize that they are three ways of
talking about the same thing. With each of these, you can
describe the other two.

We saw this explicitly, where we learned that limits and
colimits are really objects with universal properties (terminal
and initial objects) in categories of cones and cocones. These
objects are chosen by left and right adjoints.
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Central Idea

Important Categorical Idea (Continued.)

The Many Ways of Describing Structures.

We also explicitly saw this in Definition (III) and (IV) of adjoint
functors, where the units and counits have universal
properties.

It is important to see them individually and as reflections of
each other.

We will see that Kan extensions are yet another equivalent
way of describing categorical structures.
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Foreshadowing

Chapter 4: Relationships Between Categories
Section 4.7: The Yoneda Lemma

Representable Functors
Yoneda Embedding Theorem
Yoneda Lemma
The Contravariant Yoneda Embedding.
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Introduction

As we saw in Important Categorical Idea, the relationship between
a category A and the category SetA

op
is fundamental. In this

section, we will elaborate. The Yoneda Lemma first put forward by
Nobuo Yoneda arises everywhere and has the reputation of being
one of the most fundamental theorems in category theory.
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Introduction

This section describes two ideas.

First, the Yoneda Embedding Theorem shows the category A
embeds or “sits nicely” inside SetA

op
.

To do this, we will identify the objects of A with certain objects
of SetA

op
.

Secondly, the Yoneda Lemma shows that every object in
SetA

op
is determined by the way it interacts with the objects

from A.

The implications of these two ideas will be elaborated at the
end of the section.
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The Yoneda Embedding Theorem

Let us begin with SetA
op

. The objects of this category are functors
F : Aop −! Set (we will see that such a functor is called a
presheaf) and the morphisms are natural transformations of such
functors. We met special functors of this type
HomA( , a) : Aop −! Set where a is an object in A. Any functor
that is isomorphic to such a functor is called a representable
functor. In a sense, these functors are “represented” by the
objects in A.
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The Yoneda Embedding Theorem

There is a functor yA : A −! SetA
op

, called the Yoneda
embedding functor, that takes every object a ∈ A to the functor it
represents, i.e., yA(a) = HomA( , a). The functor yA is defined
on morphisms as follows: for every f : a −! a′ in A there is a
natural transformation

yA(f) : HomA( , a) =⇒ HomA( , a′).

For object b in A, the b component is

yA(f)b : HomA(b , a) −! HomA(b , a′)

and is defined as

k : b −! a 7−! f ◦ k : b −! a −! a′.
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The Yoneda Embedding Theorem

One can see that yA(f) is natural by showing that the following
square is commutative for any g : b ′ −! b

HomA(b , a)
yA(f)b

//

HomA(g,a)
��

HomA(b , a′)

HomA(g,a′)
��

HomA(b ′, a) yA(f)b′

// HomA(b ′, a′).

For a given h : b −! a in the upper left-hand corner, both paths
around the square go to f ◦ h ◦ g : b ′ −! a′ in the lower right-hand
corner.
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The Yoneda Embedding Theorem

Exercise
Show that yA respects composition. That is, show for f : a −! a′

and f ′ : a′ −! a′′ in A, we have yA(f ′ ◦ f) = yA(f ′) ◦V yA(f).

Exercise
Show that yA respects identity morphisms. That is, show
yA(ida) = IdHom( ,a).

These two exercises show that yA : A −! SetA
op

is indeed a
functor.
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The Yoneda Embedding Theorem

Some examples of this functor are needed. Consider the following
two categories.

3 3′

a

f

��

g

��

a

f

��

g

��

�Z△

b
h

// c b
h

// c
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The Yoneda Embedding Theorem

These two categories are almost exactly alike except 3′ does not
commute. We place the �Z△ to symbolize this failure of
commutativity. Formally, this means that g = h ◦ f in 3 but g , h ◦ f
in 3′. The next slide lists the representable functors for these
categories.
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The Yoneda Embedding Theorem

3 3′

Hom3(x, a) =


{ida} : if x = a

∅ : if x = b

∅ : if x = c

Hom3′(x, a) =


{ida} : if x = a

∅ : if x = b

∅ : if x = c

Hom3(x, b) =


{f } : if x = a

{idb } : if x = b

∅ : if x = c

Hom3′(x, b) =


{f } : if x = a

{idb } : if x = b

∅ : if x = c

Hom3(x, c) =


{g = hf } : if x = a

{h} : if x = b

{idc} : if x = c

Hom3′(x, c) =


{g, hf } : if x = a

{h} : if x = b

{idc} : if x = c

The representable functors for 3 and 3′.
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The Yoneda Embedding Theorem

The morphisms of 3 and 3′ induce morphisms of representable
functors. Let us examine the morphisms induced by h : b −! c.

3 3′

Hom3( , b)
y3(h) +3 Hom3( , c) Hom3′( , b)

y3′ (h) +3 Hom3′( , c)

f � y3(h)a
// g = hf f � y3′ (h)a

// hf

idb
� y3(h)b

// h idb
� y3′ (h)b

// h

{ }
� y3(h)c

// idc { }
� y3′ (h)c

// idc
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The Yoneda Embedding Theorem

The main point of these calculations is to show that all the
information about the categories 3 and 3′ are in the representable
functors and in the induced morphisms of the representable
functors. This is the central idea of the Yoneda Embedding
Theorem: a locally small category can be totally described as
representable functors. Thus, a version of the category 3 “sits
inside” the category Set3op

, and a version of the category 3′ “sits
inside” the category Set3′op

. This idea is true for any small
category.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 4.7: The Yoneda Lemma



The Yoneda Embedding Theorem

Theorem
The Yoneda Embedding Theorem For any locally small category
A, the covariant functor yA : A −! SetA

op
is injective on objects,

full, and faithful.
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The Yoneda Embedding Theorem

Proof.
The functor is

Injective on objects. Let yA(a) = yA(a′). This means that
they are equal on every component including a. Hence
yA(a)a = yA(a′)a , which implies that
Hom(a, a) = Hom(a, a′). The first set contains ida : a −! a.
Since that morphism is in the second Hom set, a must equal
a′.

Full. Consider an arbitrary natural transformation
β : Hom( , a) =⇒ Hom( , a′). The naturality of β means that
for any k : b −! a, the following square commutes:

HomA(a, a)
βa

//

Hom(f ,a)
��

HomA(a, a′)

Hom(f ,a′)
��

HomA(b , a) βb

// HomA(b , a′).

□
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 4.7: The Yoneda Lemma



The Yoneda Embedding Theorem

Continued.
In the upper left corner is ida . The top horizontal map takes ida to
some map f : a −! a′. The right vertical map takes f to f ◦ k . The
left vertical map takes ida to k : b −! a. In order for this square to
commute βb must take k to f ◦ k . But this is exactly the definition of
yA(f : a −! a′). This means that β = yA(f : a −! a′).

Faithful. If yA(f) = yA(f ′) then they are equal at the a
component, i.e., yA(f)a = yA(f ′)a . This means that they have
the same value at ida . We have that f = f ◦ ida = f ′ ◦ ida = f ′.

□

It is important to keep in mind that yA is a covariant functor, but
each of its images is a contravariant functor.
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The Yoneda Embedding Theorem

A theorem that shows that a structure can be represented as
another structure is usually called a representation theorem.
Perhaps the Yoneda Embedding Theorem should be called the
Yoneda Representation Theorem.
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The Yoneda Embedding Theorem

Exercise
Consider the contravariant Yoneda embedding functor
yA : Aop −! SetA that takes a to HomA(a, ) and f : a −! a′ to
yA(f) = HomA(a, f). Show that yA(f) is natural. Also show that
yA is injective on objects, full, and faithful. The contravariant
Yoneda embedding says that Aop “sits nicely inside” SetA. Keep
in mind that yA is contravariant, but each of its images is a
covariant functor.
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The Yoneda Embedding Theorem

The main idea of the Yoneda lemma is not only that a small
category embeds nicely inside its functor category, but other
elements in its functor category are determined by their interaction
with the embedded category. As an example, consider the
category 3. We have the embedded representable functors and for
every F : 3op −! Set, there are natural tranformations from the
representable functors to F . We can envision such maps as the left
diagram:

Set3op
Set

Hom3( , a)

��

F(a)

F

Hom3( , b)

3;
Hom3( ,f)

:B

Hom3( , c)

ck

Hom3( ,h)
ks

Hom3( ,g)

\d

F(b)

F(f)

DD

F(c)

F(g)

ZZ

F(h)
oo
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The Yoneda Lemma

We will see that for a functor F : Aop −! Set, the maps from the
representable functors to F determine the values of F shown on
the right. In other words, the representable functors determine all
the functors.

Theorem
The Yoneda Lemma. For every locally small category A, and for
every F : Aop −! Set, the set of natural transformations from
HomA( , a) to F is naturally isomorphic with the set F(a), i.e.,

Hom
SetA

op (HomA( , a),F) � F(a).
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The Yoneda Lemma

Proof.
We describe an isomorphism
Θ: Hom

SetA
op (HomA( , a),F) −! F(a). The following diagram

will be helpful.

ida
� //

_

��

αa(ida)_

��

HomA(a, a)
αa //

Hom(f ,a)
��

F(a) ∋ x

F(f)
��

HomA(b , a) αb̂

xb // F(b)

f � // x̂b(f) = F(f)(x)

□
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The Yoneda Lemma

Continued.

For a natural transformation α : HomA( , a) =⇒ F , we define
Θ(α) = αa(ida). In detail, αa : HomA(a, a) −! F(a) and
ida ∈ HomA(a, a), so αa(ida) ∈ F(a). The inverse of Θ is
Θ−1 : F(a) −! Hom

SetA
op (HomA( , a),F). For an element x in

the set F(a), we define Θ−1(x) = x̂ where x̂ : HomA( , a) =⇒ F .
For b ∈ A, the component x̂b : HomA(b , a) −! F(b) is defined for
a map f : b −! a in A as x̂b(f) = F(f)(x). In detail,
F(f) : F(a) −! F(b) and x ∈ F(a), so F(f)(x) ∈ F(b). □
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The Yoneda Lemma

Continued.

It remains to show that Θ and Θ−1 are inverses.

Θ(Θ−1(x)) = Θ(̂x) = x̂a(ida) = F(ida)(x) = idF(a)(x) = x.

Θ−1(Θ(α)) = Θ−1(αa(ida)) = ̂αa(ida). Let us see how this
natural transformation is defined at component b. The
morphism ̂αa(ida)b is defined for f : b −! a as F(f)(αa(ida)).
By the naturality of α, this is exactly αb . Thus we have shown
that Θ−1(Θ(α)) = α.

□
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The Yoneda Lemma
Notice that the fact that yA is full and faithful is basically a
consequence of the Yoneda lemma. To see this, set F of the
Yoneda lemma to HomA( , a′). This gives us

Hom
SetA

op (HomA( , a),HomA ( , a′)) � HomA(a, a′).

Example

What does the Yoneda embedding say about partial orders? Let P
be a partial order. Then HomP(p, p′) is either a one-element set (if
p ≤ p′) or the empty set (if p ≰ p′). The functor Homp( , p) tells
whether or not any element is less than or equal to p. Putting this
all together, gives us the following obvious property of partial
orders:

[ For all q ∈ P, if q ≤ p then q ≤ p′] if and only if p ≤ p′.

(⇐= is obvious and =⇒ is true by setting q = p.)
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The Yoneda Lemma

There is a dual to the Yoneda Lemma:

Theorem
The contravariant Yoneda Lemma. For every category A, and for
every F : A −! Set, the set of natural transformations from
HomA(a, ) to F is naturally isomorphic with the set F(a), i.e.,

HomSetA(HomA(a, ),F) � F(a).
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The Importance of the Yoneda Lemma

Why are the Yoneda Embedding Theorem and the Yoneda Lemma
so important? They formalize ideas that we met many times:

Way back in Chapter 1, we saw that elements in a set, S, can
be described by morphisms {∗} −! S.

Similarly, to find triplets in S, one should look at morphisms
{a, b , c} −! S.

We also saw that objects in a graph are determined by graph
homomorphisms from trivial graphs.

Certain types of paths in a graph are determined by certain
types of graph homomorphisms to the graph.

Vectors in a K-vector space V are described with linear
transformations K −! V .

We will see later that paths in a topological space (or
manifold) T are determined by maps [0, 1] −! T .
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The Importance of the Yoneda Lemma

In all these examples, properties of an object in a category are
determined by the maps to that object. The maps probe the
objects. Both the Yoneda Embedding Theorem and the Yoneda
Lemma show the full power of category theory by showing that the
properties of an object are totally determined by the maps to the
object. In other words, one should study the morphisms of a
category to understand the structure of the objects in the category.
This is the core of category theory.
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The Importance of the Yoneda Lemma

There is another way to think about the Yoneda Lemma.

It says that every object in SetA
op

can be written in a universal
way as a bunch of maps from representable functors.

Another way to say this is that an arbitrary element of SetA
op

can be written as a colimit of representable functors.
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The Importance of the Yoneda Lemma

As we saw, the category Set is (complete and) cocomplete.
The category SetA

op
inherits this cocompleteness.

The Yoneda Lemma says that the best (smallest) category
that cocompletes A is SetA

op
.

Another way to say this is that if you freely add colimits to A,
you get a category equivalent to SetA

op
.

This functor category is the cocompletion of A. A
consequence of this is that if A starts off cocomplete, then A
is equivalent to SetA

op
.
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Section 4.8: Mini-course: Basic Categorical Logic

Propositional Logic
Predicate Logic
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Foreshadowing

We describe how category theorists look at the structures of
logic.

The first part is concerned with propositional logic which deals
with true or false statements about properties of particular
objects.

The second part is concerned with predicate logic which deals
with general properties of many objects.
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Categorical Logic

History

The vast majority of material in this mini-course on categorical
logic was first formulated by F. William Lawvere (1937 – 2023)
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Basic Definitions

Definition
Logic is about propositions which are statements that are true or
false. Propositional logic is concerned with statements about
properties of single entities.

Example

“Category theory is easy” is a true proposition.

“Category theory is boring” is totally false.

“George Washington was a king of France” is false.

“2 + 2 = 4” is true.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 4.8: Mini-course: Basic Categorical Logic



Reminder

Our central focus will be the category of propositions or Prop.

A Category Defined

The preorder category, Prop, has propositions as objects, and
there is a single morphism from proposition P to proposition Q iff P
implies (or entails) Q.

Example

“Joan studies category theory” −! “Joan will be able to learn
a lot of science.”

“Joan will be able to learn a lot of science” −!“Joan will be
happy.”

Combining these two implications means that “Joan studies
category theory” −! “Joan will be happy.”
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Foreshadowing

Logic is not only about propositions but about operations on
propositions and how propositions relate to each other. We will see
the following operations

Conjunction “and” ∧

Implication “implies” =⇒

Disjunction “or” ∨

Negation “not” ¬

Bi-implication “iff”⇔.
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Conjunction

In Prop, the conjunction or the logical and of the proposition is
used as follows:

Example

“Jack will be able to learn a lot of physics” and the proposition

“Jack will be able to learn a lot of mathematics” is the
proposition

“Jack will be able to learn a lot of physics” ∧ “Jack will be able
to learn a lot of mathematics.”

We can write this as“Jack will be able to learn a lot of physics
and mathematics.”
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Remember the definition of a product

c

ka

��

kb

  

h ∃!
��

a × b

πa
ww

πb
''a b .

Definition
Let A be a category with
objects a and b.

A product of a and b is an
object a × b with projection
morphisms πa and πb .

These satisfy the following
universal property: for every
object c and any two maps
ka and kb ,

there exists a unique map
h : c −! a × b which makes
both triangles commute.
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Conjunction

This ∧ operation is the product in Prop.

S

{{ $$

��

P ∧ Q

uu ))
P Q .

Definition (Product in Prop.)

The product / conjunction of
propositions P and Q is
written as P ∧ Q.

It is obvious that
P ∧ Q −! P and
P ∧ Q −! Q. These are
projections.

To show that P ∧ Q satisfies
the universal property of
being a product, realize that
if S −! P and S −! Q,
then we can conclude
S −! P ∧ Q.
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Conjunction

Example
Projections maps:

“Jack will be able to learn a lot of physics and mathematics”
−! “Jack will be able to learn a lot of physics” and

“Jack will be able to learn a lot of physics and mathematics”
−! “Jack will be able to learn a lot of mathematics.”
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Conjunction

Example (Continued)

This proposition also satisfies the universal property of being a
product. Consider any proposition that implies the two
propositions.

“Jack is studying category theory” −! “Jack will be able to
learn a lot of physics” and

“Jack is studying category theory” −! “Jack will be able to
learn a lot of mathematics.”

From this it is obvious that

“Jack is studying category theory” −! “Jack will be able to
learn a lot of physics and mathematics.”
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Conjunction
An example demonstrating the universal property of conjunction.

Example

“Jack is studying
category theory.”

�� ��

��

“Jack will be
able to learn a lot

of physics
and

mathematics.”

yy %%

“Jack will be able
to learn a lot
of physics.”

“Jack will be able
to learn a lot

of mathematics.”
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Conjunction

In terms of categories, the conjunction operations is a
bifunctor

∧ : Prop ×Prop −! Prop.

The functoriality of this operations means that if P −! P′ and
Q −! Q ′, then (P ∧ Q) −! (P′ ∧ Q ′).

We can describe the universal property of the product as

HomProp(S,P ∧ Q) � HomProp(S,P) × HomProp(S,Q).

The left side has a single arrow if both of the right Hom sets
have a single element and neither of them is the empty set.
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Conjunction

Let us restate this using the product of Hom sets.

HomProp(S,P ∧ Q) � HomProp2((S,S), (P,Q)).

Using the diagonal functor ∆: Prop −! Prop2, we get

HomProp(S,P ∧ Q) � HomProp2(∆(S), (P,Q)).

We have just proved that ∧ : Prop2 −! Prop is right adjoint
to ∆: Prop −! Prop2, i.e.,

Prop

∆
))

⊥ Prop2.

∧

ii
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Implication

Another operation on propositions is the logical implication. This
takes two propositions and forms a conditional if-then statement
out of them.

Example

Given the proposition “Jordan understands category theory”
and the proposition “Jordan will see the world in a new light,”
we can form the proposition “If Jordan understands category
theory, then he will see the world in a new light.’

The proposition “It is raining” implies “There are clouds in the
sky.” This gives us the proposition “If it is raining, then there
are clouds in the sky.”
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Implication

Example

The proposition “Drive more than 60 miles per hour” might
imply “Getting a speeding ticket” and so we can form the
proposition “If you drive more than 60 miles per hour, then you
will get a speeding ticket.”

The proposition “If the moon is made of green cheese, then
the sky is blue.” is an implication. Notice the first part really
has nothing to do with the second part. The implication is true
because the sky is blue.
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Implication

In symbols, given proposition P and Q , we can form P ⇒ Q .

This statement is true if P implies Q .

It is important to keep in mind the distinction between⇒ and
−!.

The arrow⇒ is an operation of two propositions and is a
logical symbol.

The arrow −! is a categorical symbol that describes when
there is an implication of propositions in Prop.
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Implication

In terms of categories, the⇒ operation can be seen as a
bifunctor

⇒ : Propop ×Prop −! Prop.

It is covariant on the second input: If Q −! Q ′, then
(P ⇒ Q) −! (P ⇒ Q ′).

It is contravariant in the first input: If P −! P′ then
(P′ ⇒ Q) −! (P ⇒ Q).
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Conjunction and Implication
The ∧ and⇒ operations are related.

Reminder (Similar functors on Set)

For every set B, there are two functors from Set to Set:
LB(A) = A × B and RB(C) = HomSet(B ,C).

The functor LB is left adjoint to RB :

HomSet(LB(A),C) � HomSet(A ,RB(C)).

HomSet(A × B ,C) � HomSet(A ,HomSet(B ,C)).

Set

( )×B

""

⊥ Set.

Hom(B ,( ))

bb
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Conjunction and Implication

For every proposition Q , there is a a functor
( ) ∧ Q : Prop −! Prop that is defined on proposition P as
P ∧ Q .

For every proposition Q , there is a functor
Q ⇒ ( ) : Prop −! Prop which is defined on proposition S
as Q ⇒ S.

Theorem

For every proposition Q, the functor ( ) ∧ Q is left adjoint to
Q ⇒ ( ), i.e.,

Prop

( )∧Q

##

⊥ Prop.

Q⇒( )

cc
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Conjunction and Implication
The adjunction means

HomProp(P ∧ Q ,S) � HomProp(P,Q ⇒ S).

Or

(P ∧ Q) −! S if and only if P −! (Q ⇒ S).

In English, if P ∧ Q implies S, then just P itself implies that if
Q is also true, then S is true. The other direction is similar.
It pays to examine the unit and counit of this adjunction.
The unit is P −! (Q ⇒ (P ∧ Q)). This says that if P is true,
then Q not only implies Q but also implies P.
The counit is a little more famous. It says

(Q ⇒ P) ∧ Q −! P.

In English, the counit expresses the fact that if Q implies P,
and Q is true, then P is also true. This rule is called modus
ponens which means the “way of pushing.” We are pushing
the implication forward.
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Disjunction

Another operation on propositions is the disjunction
operation ∨, or the logical oroperation.

In symbols, given propositions P and Q , we can form
proposition P ∨ Q .

Example

Given proposition “Joan is good at category theory” and the
proposition “2+2=4,” we can form the proposition “Joan is good at
category theory or 2+2=4.”
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Disjunction

In terms of categories, the disjunction operation is a bifunctor

∨ : Prop ×Prop −! Prop.

The functoriality means that if P −! P′ and Q −! Q ′, then
(P ∨ Q) −! (P′ ∨ Q ′).
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Disjunction

The disjunction operation ∨ is the coproduct in the category Prop.

Example
Inclusion maps:

Consider the propositions “Jill plays music” and “Jill studies
category theory.”

The disjunction of these propositions is “Jill plays music or
studies category theory.”

There are obvious implications (inclusions) “Jill plays music”
−! “Jill plays music or studies category theory” and

“Jill studies category theory.” −! “Jill plays music or studies
category theory.”
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Disjunction

Example (Continued)
In order to show that the disjunction is the coproduct, we must
show that it satisfies the universal property.

Consider the proposition “Jill is happy.”

There are obvious implications “Jill plays music” −! “Jill is
happy” and

“Jill studies category theory” −! “Jill is happy.”

From this we can see that “Jill plays music or studies category
theory” −! “Jill is happy.”
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Disjunction

An example showing the universal property of ∨ as a coproduct.

Example

“Jill plays music.”

''

��

“Jill studies
category theory.”

ww

��

“Jill plays music
or studies

category theory.”

��

“Jill is happy.”
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Disjunction
We can describe the universal property of the coproduct as

HomProp(P ∨ Q ,S) � HomProp(P,S) × HomProp(Q ,S).

The left side has a single arrow if both of the right Hom sets
have a single element and neither of them is the empty set.
Restate this using the product of Hom sets:

HomProp(P ∨ Q ,S) � HomProp2((P,Q), (S,S)).

Restate with the diagonal functor ∆: Prop −! Prop2:

HomProp(P ∨ Q ,S) � HomProp2((P,Q),∆(S)).

We have just proved that ∨ : Prop2 −! Prop is left adjoint
to ∆: Prop −! Prop2.

Prop
∆ // Prop2.

∨

⊥
{{

∧

⊥

cc
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Negation

Another operation is the negation operation or the logical
not operation.

For the proposition “Jack studied category theory” the
negation is “Jack did not study category theory.”

In symbols, for proposition P, we write the negation as ¬P.

We can also define negation as the following ¬P = P ⇒ F
where F is the proposition that is always false.
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Negation

With this definition, we view the negation operation as a
contravariant functor

¬ : Propop −! Prop.

The functoriality of negation means that if P −! P′, then
(¬P′) −! (¬P). This says that if an implication is true, so is
its contrapositive.

One can “internalize” this result, where it becomes

((P ⇒ P′) ∧ (¬P′)) −! (¬P).

This rule is also one of the important rules in logic and is
known as modus tollens which is Latin for “the way of
pulling.” One is “pulling” the negation of the second
proposition back to the first proposition.
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Bi-implication

The final logical operation that we introduce is the
bi-implication or logical if and only if.

Two propositions bi-imply each other if they each implies the
other.

We use the symbol⇔ for this operation.

In symbols P ⇔ Q is interpreted as (P ⇒ Q) ∧ (Q ⇒ P).

Example

“Today is Tuesday”⇔ “Tomorrow is Wednesday.”
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Logical Systems

Definition
Consider composition of the negation operation with itself:

Propop
¬

,,
Prop.

¬
ll

If these two functors form an adjunction, the logical systems is
called intuitionistic.

The unit of the adjunction says that for every P in Prop, we
have P −! ¬¬P.
The counit says that for all P, we have ¬¬P −! P in Propop

which is equivalent to the unit in Prop.

If these two functors form an equivalence, the logical system
is called Boolean.

In a Boolean system, for a proposition P, we have ¬¬P ⇔ P.
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DeMorgan’s laws

Theorem
In a Boolean system, the following DeMorgan’s laws hold:

(¬P ∨ ¬Q)⇔ ¬(P ∧ Q) and (¬P ∧ ¬Q)⇔ ¬(P ∨ Q).
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DeMorgan’s laws

Proof.
The proof all falls out of the adjunctions. We will go through this
proof carefully as the rest of the proofs in this section are very
similar.

Prop2

∨

⊥ **

⊥

∧

44

¬×¬

��

Prop
∆oo

¬

��

≃ ≃

(Prop2)op

∧

⊥ ++

⊥

∨

33

¬×¬

HH

Propop .
∆oo

¬

HH

The vertical functors are equivalences and hence right and
left adjoints to each other.

The functors on bottom invert their adjointness because they
are in the opposite category.
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DeMorgan’s laws

Continued.
The two paths from the lower-right corner to the upper-left corner
are equal as can be seen here:

(¬P,¬P) ¬P�oo

(P,P)
_

OO

P.
_

OO

�oo

They both take a proposition P in Propop to (¬P,¬P) in
Prop2. □
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DeMorgan’s laws

Continued.
Since any two right adjoints to this map are isomorphic, the two
right adjoint paths from the upper-left corner to the lower-right
corner are isomorphic. In terms of elements, this is

P,Q � //
_

��

P ∧ Q_

��

¬P,¬Q � // (¬P ∨ ¬Q) � ¬(P ∧ Q).

This entails the first DeMorgan’s law. □
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DeMorgan’s laws

Continued.
The left adjoints are also unique up to isomorphism and hence the
isomorphism of the two left adjoint maps give the second
DeMorgan’s law. In detail this is

P,Q � //
_

��

P ∨ Q_

��

¬P,¬Q � // (¬P ∧ ¬Q) � ¬(P ∨ Q).

□
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Lindenbaum category

While Prop is a preorder, the partial order associated with it is of
importance also.

A Category Defined

The skeletal category of Prop is a partial order, which we call the
Lindenbaum category and denoted Lind. The objects are
equivalence classes of propositions. Two propositions P and Q are
equivalent if P ⇔ Q.

Keep in mind that P ⇔ Q in Prop if and only if P = Q in Lind.
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Predicate Logic

Logic gets much more interesting when one moves beyond dealing
with the properties of particular entities and starts dealing with
properties in general.

Definition
For every property, there is a predicate that tells which
entities have this property.

For every predicate there is a set of possible inputs to the
predicate called the domain of discourse for the predicate.
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Predicate Logic

We begin with some fun examples.

Example

There is a predicate H(x) that tells if someone is happy or not.
So H(Bill) is true if Bill is happy and false if Bill is not. The
domain of discourse for H is the set of all people.

Another example of a predicate is KCT(x) which is true if x
knows category theory and false if x does not know category
theory. The domain of discourse for KCT is also the set of all
people.

There are also predicates with more than one input. For
example M(x, y) is the predicate that is true when x is the
mother of y. The domain of discourse for M is the set of pairs
of people.
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Predicate Logic

Here are some more mathematical examples:

Example

E(n) is true when n is an even natural number. So E(1032) is
true but E(777) is false. The domain of discourse for E is the
set of natural numbers.

P(n) is true when n is a prime number. So P(7) is true but
P(57) is false. The domain of discourse for E is the set of
natural numbers.

G(m, n) is true when m is greater than n. The domain of
discourse for G is pairs of natural numbers.

The predicate A(x, n) is true if person x is n years old. The
domain of discourse for this predicate is the set of pairs of
people and natural numbers.
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Predicate Logic

One can think of a predicate as a function from the domain of
discourse to the set {True, False}.

A predicate describes a subset of the domain of discourse
where the predicate is true.

The subset that contains those elements of the domain of
discourse that have the property.

Example

The predicate H(x) describes the subset of people who are
happy.

The predicate P(n) describes the subset of natural numbers
that are prime.
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Predicate Logic

The same logical operations (∧,∨,⇒,¬, and⇔) that work for
propositions work for predicates also. The operations are
interpreted in the same way.

Example

KCT(x)⇒ H(x) says that if someone knows category theory,
then they are happy.

(M(x, y) ∧ KCT(y))⇒ H(x) says that the mother of a child
who knows category theory is happy.

(A(x,m) ∧ A(y, n) ∧M(x, y))⇒ G(m, n) says that a mother’s
age is greater than their child’s age.

E(n)⇒ ¬E(n + 1) says that if a number is even then its
successor is not even.

(G(n, 2) ∧ P(n))⇒ ¬E(n) says that every prime more than 2
is not even.
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Quantifiers

In addition to such logical operations, predicates have quantifiers.
These are devices that tell the quantity “how much” or the quantity
of elements of the domain of discourse. There are two main
quantifiers:

A universal quantifier written ∀. The predicate ∀yQ(x, y) is
true if and only if Q(x, y) is true for all possible y in the
domain of discourse.

An existential quantifier written ∃. The predicate ∃yQ(x, y)
is true if and only if Q(x, y) is true for some possible y in the
domain of discourse.
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Quantifiers

Example

∀m∃nG(n,m). This says that for all m, there is an n such that
n is greater than m. In other words, the set of natural numbers
is infinite.

∃n(E(n)∧P(n)). This says that there is a number that is even
and is prime. This is true because 2 is such a number that is
both even and prime.

∀n(P(n)⇒ (∃mG(m, n) ∧ P(m))). This says that for any
number, if it is a prime number, then there exists a larger
prime number. In other words, the collection of prime numbers
is infinite. This statement is true.
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Quantifiers

Example

∀n((P(n) ∧ P(n + 2))⇒ (∃mG(m, n) ∧ (P(m) ∧ P(m + 2)))).

To understand this, one must understand the concept of twin
primes.

Two primes are twin if they are separated by one intermediate
number.

For example: 3 and 5; 11 and 13; 599 and 601.

This statement says that if n and n + 2 are twin primes, then
there is a larger m such that m and m + 2 are twin primes.

This means there are an infinite amount of twin primes.

It is not known if this statement is true or false.
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Quantifiers

Quantifiers work on predicates with many variables.

Consider a set of variables {x1, x2, . . . , xn}. We can write this
set as x̄.

A predicate with all these variables can be written as P(x̄).

A predicate S(x̄, y) has n + 1 variables.
Examples

∀yS(x̄, y)
∃yS(x̄, y).
The predicate ∃y∀x∃bB(a, b , c, d, x, y, z) uses seven
variables. The variables y, x, and b are bound by quantifiers.
The rest of the variables are not bound and are called free.
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Predicate Logic

Let us look at predicate logic from the categorical point of view.
Collections of predicates form preorder categories.

A Category Defined

Let x̄ = {x1, x2, . . . , xn} be a set of variables.

Then the collection of all predicates that have any of these
variables as free variables forms a category called Pred(x̄).

There is a morphism R(x̄) −! S(x̄) whenever R is true (for
its variables) implies S is true (for its variables).

The category Prop of propositional statements is the
category of Pred(∅).

If x̄ ⊆ ȳ are two sets of variables, then a predicate P(x̄) can
also be seen as a predicate P(ȳ). This means that there is an
inclusion of categories Pred(x̄) ↪−! Pred(ȳ).
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Predicate Logic
The same way logical operations on propositions can be viewed as
functors on Prop, so too, logical operations on predicts can be
seen as functors on Pred(x̄). These functors satisfy the same
universal properties as they did with Prop. This means that for x̄,
we have the following functors and adjunctions:

Pred(x̄)

( )∧Q(x̄)

%%

⊥ Pred(x̄).

Q(x̄)⇒( )

ee

Pred(x̄) ∆ // Pred(x̄)2.

∨

⊥
yy

∧

⊥

ee
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Predicate Logic

Pred(x̄)op

¬

%%

Pred(x̄).

¬

ee

This diagram might be an adjunction or an equivalence depending
on whether the logical system is intuitionistic or Boolean,
respectively.
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Quantifiers as functors
Within predicate logic, the quantifiers also become functors
with universal properties between the predicate categories.
If Q(x̄, y) is a predicate in Pred(x̄, y), then ∀yQ(x̄, y) is a
predicate in Pred(x̄).
The same is true for the predicate ∃yQ(x̄, y).
These two mappings are functors

∀y : Pred(x̄, y) −! Pred(x̄)

and
∃y : Pred(x̄, y) −! Pred(x̄).

Functoriality comes from the fact that if Q(x̄, y) −! R(x̄, y) in
Pred(x̄, y), then

∀yQ(x̄, y) −! ∀yR(x̄, y)

and
∃yQ(x̄, y) −! ∃yR(x̄, y)

in Pred(x̄).
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Quantifiers as adjoints

The universal and existential quantifiers are adjoints. However it
takes a little effort to see this. First some reminders.

Reminder

Let S and T be sets. Then the powersets P(S) and P(T) form
partial order categories.

For any set function f : S −! T, there is an induced functor
f−1 : P(T) −! P(S) called the preimage or inverse image
functorand is defined on a subset Y ⊆ T as

f−1(Y) = {x : f(x) = y for some y ∈ Y }.

For any set function f : S −! T, there is also an induced
functor ∃f : P(S) −! P(T) called the direct image functor ot
the image functor and is defined on a subset X ⊆ S as

∃f(X) = {f(x) : x ∈ X} = {y : there is an x ∈ X and f(x) = y}.
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Quantifiers as adjoints

The direct image functor is left adjoint to the preimage functor.

In other words, for X ⊆ S and Y ⊆ T there is the following
isomorphism.

X ⊆ f−1(Y) if and only if ∃f(X) ⊆ Y .

S

X
∃f(X)

f−1(Y)
Y

T
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Quantifiers as adjoints
For any set function f : S −! T , there is yet another induced
functor ∀f : P(S) −! P(T), which we call the coimage functor
and is defined for X ⊆ S as

∀f(X) = {y : for all s ∈ S, if f(s) = y, then s ∈ X}.

In English, ∀f(X) consists of those elements in T where all
the preimages are only in X and nowhere else.
The preimage functor f−1 is left adjoint to the coimage functor
∀f .
This means that for X ⊆ S and Y ⊆ T ,

f−1(Y) ⊆ X if and only if Y ⊆ ∀f(X).

These two adjunctions can be summarized with

P(T) f−1
// P(S).

∃f
⊥

||

∀f
⊥

bb
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Quantifiers as adjoints

Our goal is still to show that quantifiers are adjoints.

To reach our goal, take two sets S and T and consider the
projection function π : S × T −! T .

π induces three functors: π−1,∃π, and ∀π.
The functions are defined for X ⊆ S × T and Y ⊆ T as

π−1(Y) = {(s, t) ∈ S × T | t ∈ Y } ⊆ S × T
∃π(X) = {t ∈ T | there exists a (s, t) ∈ X and π(s, t) = t} ⊆ T
∀π(X) = {t ∈ T | for all (s, t) ∈ X we have π(s, t) = t} ⊆ T
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Quantifiers as adjoints

How does the preimage, direct image, and coimage functors work
for a projection function?

The ∃π projects B.

The π−1 takes A to the whole strip.

The ∀π takes C to the part which has the entire strip
highlighted.

S × T

B

π−1(A)

C

∃π

π−1

∀π

T

∃π(B)

A

∀π(C)
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Quantifiers as adjoints

These functors are adjoint as follows

P(T) π−1
// P(S × T).

∃π

⊥
zz

∀π

⊥

dd

The two adjunctions can are written as the following statements:

X ⊆ π−1(Y) if and only if ∃π(X) ⊆ Y

π−1(Y) ⊆ X if and only if Y ⊆ ∀π(X).
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Quantifiers as adjoints

The two adjunctions can be seen here:

S × T

X π−1(Y)

π−1(Y) X

T

Y∃π(X)

Y ∀π(X)
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Quantifiers as adjoints

At last, we come to show that quantifiers are adjoints.

With the above adjunctions in mind, we can talk about
functors between the categories of predicates.

For every two variables x and y, there is an inclusion functor
∆y : Pred(x) ↪−! Pred(x, y).

It takes a predicate Q(x) to the predicate Q(x, y) where the y
variable is not used.

We denote this inclusion functor ∆y because it is like the
diagonal functor in the sense that if Q(x) is true, then Q(x, y)
is true for all possible values of y.

This is reminiscent of the diagonal functor ∆: B −! BA,
where ∆(b) is a functor whose output is b for all possible
values of a in A.
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Quantifiers as adjoints

The predicate Q(x, y) describes a subset of pairs of elements
of the domain of discourse.

The predicate Q(x) describes a subset of elements of the
projection of the domain of discourse.

The ∆y functor is exactly the same as the π−1 of the previous
discussion.

As such, the ∆y also has two adjoints.
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Quantifiers as adjoints

Let us boost this up from a single variable x to a set of
variables x̄.

Given a predicate Q(x̄) in Pred(x̄) and a predicate R(x̄, y) in
Pred(x̄, y), we have the following adjunctions:

R(x̄, y)) −! ∆y(Q(x̄)) if and only if ∃yR(x̄, y)) −! Q(x̄)

∆y(Q(x̄)) −! R(x̄, y)) if and only if Q(x̄) −! ∀yR(x̄, y)).
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Quantifiers as adjoints
Hence there are the following two adjunctions.

Pred(x̄)
∆y

// Pred(x̄, y).

∃y

⊥
yy

∀y

⊥

ee

This diagram is similar to

Prop
∆ // Prop2.

∨

⊥
{{

∧

⊥

cc

.
This makes sense because the universal quantifier is a
generalization of the ∧, and the existential quantifier is a
generalization of ∨.
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Properties of quantifiers

Theorem
In a Boolean logical system, the following generalized
DeMorgan’s laws hold:

¬∀yP(x̄, y)⇐⇒ ∃y¬P(x̄, y)

and
¬∃yP(x̄, y)⇐⇒ ∀y¬P(x̄, y).
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Properties of quantifiers

Proof.
Consider the following square with a Boolean system of logic

Pred(x̄, y)

∃y

⊥
((

∀y

⊥

66

¬

��

Pred(x̄)
∆y

oo

¬

��

≃ ≃

Pred(x̄, y)op

∀y

⊥
((

∃y

⊥

66

¬

HH

Pred(x̄).op∆y
oo

¬

HH

The proof follows along the same line as the proof of regular
DeMorgan’s laws. □
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Properties of quantifiers

Theorem
Quantifiers respect the appropriate operation:

∃xP(x) ∨ ∃xQ(x) ⇐⇒ ∃x(P(x) ∨ Q(x))

and
∀xP(x) ∧ ∀xQ(x) ⇐⇒ ∀x(P(x) ∧ Q(x))
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Properties of quantifiers

Proof.
Consider the following diagram:

Pred(x̄, y)2

∃2
y

⊥
''

∀2
y

⊥

77

∧⊢

��

∨ ⊢

��

Pred(x̄)2
∆y

oo

∧⊢

��

∨ ⊢

��

Pred(x̄, y)

∃y

⊥
''

∀y

⊥

77

∆

OO

Pred(x̄)
∆y

oo

∆

OO

The two maps from the lower right to the upper left amount to
Q(x̄) 7! (∆yQ(x̄),∆yQ(x̄)). This means that the two compositions
of two right adjoints (and the two left) are isomorphic. □
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Properties of quantifiers

Theorem
Quantifiers respect quantifiers

∃y∃zP(x̄, y, z) ⇐⇒ ∃z∃yP(x̄, y, z)

and
∀y∀zP(x̄, y, z) ⇐⇒ ∀z∀yP(x̄, y, z).

The proof is left as a (solved) Exercise in the book.
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Logic and sets

Remark
It should be noticed that logic and sets are intimately related.

The intersection of two sets is the set of elements that are in
one set and in the other set. In symbols, for sets S and T,

S ∩ T = {x : x ∈ S ∧ x ∈ T }.

The union of two sets is the set of elements that are in one set
or the other set. In symbols, for sets S and T,

S ∪ T = {x : x ∈ S ∨ x ∈ T }.

The complement of a set S is the set of elements that are not
in S. In symbols, for set S,

Sc = {x : ¬(x ∈ S)}.
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Summary

It pays to meditate on what was accomplished here. What was
gained by presenting logic from a categorical point of view?

Remark
Our goal was not simply to show that logic can be done in the
language of category theory. Rather, our goal was to
demonstrate several important ideas:

We showed that logic is united with the other fields that we
met in this course. The unity comes from the fact that logic
employs the same tools of products, coproducts, functoriality,
equivalences, adjunction, etc., that are used in other areas.
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Summary

Remark (Continued)
We showed that the various logical operations do not stand
alone. Category theory shows that the operations are
intimately connected to each other and can be defined in
terms of each other with universal properties.

We showed that many of the truths of propositional and
predicate logic are simple consequences of the universal
properties of the operations. A logical statement is not true
because it seems true. Rather the statement has to be true
because of the way operations are defined in terms of other
operations.

Categorical logic is a wonderful modern contribution to the ancient
field of logic.
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