
Monoidal Category Theory: Unifying concepts in
Mathematics, Physics, and Computing

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved.

© June 2024 Noson S. Yanofsky

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved.

Lecture Slides

Chapter 3:

Structures

Within Categories

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved.

Foreshadowing

Chapter 3: Structures Within Categories
Section 3.1: Products and Coproducts
Section 3.2: Limits and Colimits
Section 3.3: Slices and Coslices
Section 3.4: Mini-course: Self-Referential Paradoxes

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved.

Foreshadowing

Chapter 3: Structures Within Categories
Section 3.1: Products and Coproducts

Products
Coproducts

We motivate the notion of a product in a category.

We define a product and look at its properties.

We describe duality and come to the notion of a coproduct
with its properties.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Foreshadowing

A category may be a lot more than simply a collection of objects
and morphisms between objects. Rather, there might be various
relationships between certain objects and morphisms. These
relationships can make certain objects have important properties.
In this chapter we describe many such relationships. We also
describe operations one can perform with the objects and
morphisms in a category.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

We begin with one of the simplest operations one can perform
with the objects of a category.

Given objects a and b in a category, one can sometimes form
their product a × b.

The product means different things in different categories.

While a product is one of the simplest types of structure, the
ideas in this section arise over and over again in the rest of
this book.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples
Before we come to the formal definition of what we mean by a
product in an arbitrary category, let us carefully look at the category
of sets and examine the idea of a Cartesian product of sets.

Example

Let S = {x, y, z} and T = {0, 1}.

The Cartesian product is defined as the set of pairs of
elements where the first element is from S and the second
element is from T.

S × T = {(x, 0), (y, 0), (z, 0), (x, 1), (y, 1), (z, 1)}.

The set S × T contains the information of both S and T.

There are functions πS : S × T −! S and πT : S × T −! T
that “forgets” one of the elements of the pair. These functions
are called projection functions.

They are defined on the elements as in the next slide.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples
The Cartesian product of two sets and its projection functions.

Example (Continued)

S × TπS

ss

πT

++S T

x (x, 0)�πSoo � πT // 0

(y, 0))πS

tt

)
πT

44

y (z, 0)3
πS

yy

3

πT

99

1

(x, 1)
�

πS

``

)
πT

44

z (y, 1)
�

πS

ee

3

πT

99

(z, 1).�

πS
jj

=

πT

>>

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

How does the Cartesian product of two sets and the projections
relate to other sets? Let us look at three examples of other sets
and morphisms. All three examples are depicted by the following
diagram

V

kS

��

kT

h ∃!
��

S × T

πS
ww

πT
''

S T .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

Example

Consider the set V = {(y, 1), (z, 0), (z, 1)}.

This set has some — but not all — pairs of elements from S
and T.

There are also projection maps kS : V −! S and kT : V −! T
which have the same values as πS and πT on those pairs.

While V feels like a product, it is not. V is a subset of S × T
and there is an inclusion function h : V −! S × T which
makes the above diagram commute.

The inclusion function is unique.

From this vantage point, think of S × T as the set of pairs that
is the largest or “best fitting” set of pairs.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

Example

Consider the set V = {a, b , c, d, e} and two functions
kS : V −! S and kT : V −! T.

For each element of V, these two functions pick an element in
S and an element in T.

For example, kS(c) = z and kT (c) = 0. With kS and kT one
can make a new function h : V −! S × T that uses the
information of kS and kT .

This new function associate c with (z, 0) in S × T.

That is, there is a unique implied function h : V −! S × T that
makes the above diagram commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

Example

In the definition of S × T we used the notation (x, 1).

While this is common, other notations could also be used. For
example, there is [x, 1] or ⟨x, 1⟩ or even {x, 1, {x}}.

If one was to use this last example as a pair of elements, then
the set of all pairs of elements from S and T would look like V

{{x, 0, {x}}, {y, 0, {y}}, {z, 0, {z}}, {x, 1, {x}}, {y, 1, {y}}, {z, 1, {z}}} .

Such a set V also has two projection functions kS : V −! S
and kT : V −! T. They are defined, for example, as
kS({y, 1, {y}}) = y.

While S × T has the same number of elements as V they are
not the same sets. There is an obvious unique
h : V −! S × T that takes {x, 1, {x}} to (x, 1). In this case, h is
a bijection (isomorphism).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

Definition
The point of these three examples is that if there is a V and
functions kS and kT , then there is a unique function h making
the appropriate diagram commute.

This property that S × T and its projection maps, πS and πT ,
have is called a universal property.

It is a way of saying that S × T is the best set that has the
information of S and T and maps to S and T.

This property of the product is satisfied by all the objects and
maps of the category that fit into the diagram above.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

Example

Given a set of real numbers, say

S =

{
1
2
,
2
3
,
3
4
, . . . ,

n
n + 1

, . . .

}
one can ask for the greatest lower bound or the infimum of this
set. This is a number X that is

a lower bound, i.e, a number, X, that is less than or equal to
all the numbers in S, and

it is greatest of all the lower bounds, i.e., this number X is
greater than (or equal to) all the lower bounds.

It is not hard to see that X = 1
2 is the greatest lower bound of the

set S.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

Example (Continued)

Within the partial order of real numbers, a greatest lower bound
corresponds to the fact that there is

a morphism X −! s for all s ∈ S, and

any number Y that has a morphism Y −! s for all s ∈ S will
also have a morphism Y −! X.

Another way to say this is that X is

a lower bound, and

the “best fitting” lower bound.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

Example (Continued)
A product is similar to a greatest lower bound, but it pertains to an
arbitrary category and not just to a partial order category. A
product is

an object with projections, and

it is the “best fitting” object with projections, i.e., if there is any
other object with projections, then there is a unique morphism
from the other object to the product.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Definition of a product

c

a × b

a b .

Definition
Let A be a category with
objects a and b.

A product of a and b is an
object a × b with projection
morphisms πa and πb .

These satisfy the following
universal property: for every
object c and any two maps
ka and kb ,

there exists a unique map
h : c −! a × b which makes
both triangles commute.

We call h the induced morphism of ka and kb and we write it as
h = ⟨ka , kb⟩. We write the h with the ∃! to stress that h is a unique
such map that satisfies the universal property.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Definition of a product

c

a × b

πa
ww

πb
''a b .

Definition
Let A be a category with
objects a and b.

A product of a and b is an
object a × b with projection
morphisms πa and πb .

These satisfy the following
universal property: for every
object c and any two maps
ka and kb ,

there exists a unique map
h : c −! a × b which makes
both triangles commute.

We call h the induced morphism of ka and kb and we write it as
h = ⟨ka , kb⟩. We write the h with the ∃! to stress that h is a unique
such map that satisfies the universal property.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Definition of a product

c

ka

��

kb

a × b

πa
ww

πb
''a b .

Definition
Let A be a category with
objects a and b.

A product of a and b is an
object a × b with projection
morphisms πa and πb .

These satisfy the following
universal property: for every
object c and any two maps
ka and kb ,

there exists a unique map
h : c −! a × b which makes
both triangles commute.

We call h the induced morphism of ka and kb and we write it as
h = ⟨ka , kb⟩. We write the h with the ∃! to stress that h is a unique
such map that satisfies the universal property.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Definition of a product

c

ka

��

kb

h ∃!
��

a × b

πa
ww

πb
''a b .

Definition
Let A be a category with
objects a and b.

A product of a and b is an
object a × b with projection
morphisms πa and πb .

These satisfy the following
universal property: for every
object c and any two maps
ka and kb ,

there exists a unique map
h : c −! a × b which makes
both triangles commute.

We call h the induced morphism of ka and kb and we write it as
h = ⟨ka , kb⟩. We write the h with the ∃! to stress that h is a unique
such map that satisfies the universal property.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Definition of a product

c

ka

��

kb

h ∃!
��

a × b

πa
ww

πb
''a b .

Definition
Let A be a category with
objects a and b.

A product of a and b is an
object a × b with projection
morphisms πa and πb .

These satisfy the following
universal property: for every
object c and any two maps
ka and kb ,

there exists a unique map
h : c −! a × b which makes
both triangles commute.

We call h the induced morphism of ka and kb and we write it as
h = ⟨ka , kb⟩. We write the h with the ∃! to stress that h is a unique
such map that satisfies the universal property.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Examples of a product
Let us look at some examples.

Example

In Set the product of sets S and T is the Cartesian product of
sets.

Example

In a partial order (P,≤), the product of two elements, p and q is
the meet. This is an element p ∧ q such that

p ∧ q ≤ p and p ∧ q ≤ q, and furthermore

if there is any other element c such that c ≤ p and c ≤ q, then
c ≤ p ∧ q.

Notice that p ∧ q is exactly the greatest lower bound of p and q.
If (P,≤) is a total order than p ∧ q is the minimum of p and q.

Example

In CompFunc, the category of computable functions, the objects
correspond to types. If T1 and T2 are types, then T1 × T2 is a
product type. Such a type consists of pairs of entities from type T1

and T2. There are projection functions that take pairs of elements,
and outputs one element. This means that there are computable
functions πa : T1 × T2 −! T1 and π2 : T1 × T2 −! T2. It is easy to
see that they satisfy the property of being a product.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Examples of a product

Example

In the category of graphs, the product of two graphs G and H is a
graph whose vertices are pairs of vertices from G and H and there
is an edge from (g, h) to (g′, h′) if there is an edge from g to g′ in
G and an edge from h to h′ in H. It is not hard to see that the
projection functions are graph homomorphisms.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

The property is universal because it characterizes being a
product within the whole category.

Be aware of what was done in this definition. We defined a
special object in the category by not looking at what was in
the objects, but by examining the relationship of that object
with all the objects in the category. (This is an Important
Categorical Idea.

Notice, a category A with objects a and b might not have an
object that satisfies the above universal property. In that case
we say that the “product does not exist.” Within a category
where the product always exists, we say that the category
“has binary products.”

Notice that we defined “a” product rather than “the” product.
There might be more than one product for any two objects.
This is not a problem because the next theorem.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

c

a b

c′

Theorem
Consider objects a and b.

Assume that there exists an
object c and projection
maps πa and πb so that c is
a product of a and b.

Furthermore, assume that
there also exists an object
c′, and projection maps π′a
and π′b so that c′ is a
product of a and b.

Then there is a unique
isomorphism from c to c′

that commutes with the
projections.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

c
πa

xx

πb

&&a b

c′

Theorem
Consider objects a and b.

Assume that there exists an
object c and projection
maps πa and πb so that c is
a product of a and b.

Furthermore, assume that
there also exists an object
c′, and projection maps π′a
and π′b so that c′ is a
product of a and b.

Then there is a unique
isomorphism from c to c′

that commutes with the
projections.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

c
πa

xx

πb

&&a b

c′
π′a

ff

π′b

88

Theorem
Consider objects a and b.

Assume that there exists an
object c and projection
maps πa and πb so that c is
a product of a and b.

Furthermore, assume that
there also exists an object
c′, and projection maps π′a
and π′b so that c′ is a
product of a and b.

Then there is a unique
isomorphism from c to c′

that commutes with the
projections.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

c
πa

xx

πb

&&
�∃!

��

a b

c′
π′a

ff

π′b

88

Theorem
Consider objects a and b.

Assume that there exists an
object c and projection
maps πa and πb so that c is
a product of a and b.

Furthermore, assume that
there also exists an object
c′, and projection maps π′a
and π′b so that c′ is a
product of a and b.

Then there is a unique
isomorphism from c to c′

that commutes with the
projections.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

c
πa

xx

πb

&&
�∃!

��

a b

c′
π′a

ff

π′b

88

Theorem
Consider objects a and b.

Assume that there exists an
object c and projection
maps πa and πb so that c is
a product of a and b.

Furthermore, assume that
there also exists an object
c′, and projection maps π′a
and π′b so that c′ is a
product of a and b.

Then there is a unique
isomorphism from c to c′

that commutes with the
projections.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

This means the product is unique up to a unique
isomorphism.

The proof is very similar to the proof that initial objects are
unique up to a unique isomorphism.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

From the definition of the product a × b, for any object c and any
pair of morphisms ka : c −! a and kb : c −! b, there is an
induced morphism ⟨ka , kb⟩ : c −! a × b. This gives us an
isomorphism

HomA(c, a × b)
πa◦() , πb◦()

//

HomA(c, a) × HomA(c, b).
⟨ , ⟩

oo

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

This isomorphism of Hom sets can be taken as a the definition of a
product. To put it formally:

Definition
Let A be a category with objects a and b. A product of a and b is
an object a × b such that there exists an isomorphism of Hom sets:

HomA(c, a × b) � HomA(c, a) × HomA(c, b).

(Notice that the × in the left is a product of the category and the ×
on the right is the Cartesian product of Hom sets.) We need one
more requirement, namely this isomorphism should be natural.
We will spell out this requirement later.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Examples of a product

Example

In the partial order (P,≤), the Hom sets are either the empty set or
a set with one element.

HomP(p, q ∧ r) � HomP(p, q) × HomP(p, r)

The left side is a one-element set if and only if each part of the
right side is a one-element set.

Example

In PO, let (P,≤) and (Q ,⪯) be partial orders. Then (P × Q ,⊑) is
the partial order whose elements are ordered pairs of elements
from P and Q and whose order is defined as follows:

(p, q) ⊑ (p′, q′) if and only if p ≤ p′ and q ⪯ q′

It is not hard to show that this is a partial order. This partial order is
the product of (P,≤) and (Q ,⪯).Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Examples of a product

Example

In Top, if (X , τ) and (Y , σ) are topological spaces, then (X × Y , δ)
is their product where X × Y is the Cartesian product of X and Y
and δ is the product topology (see any introductory topology
textbook).

Example

In Group, if (G, ⋆, 1, ()−1) and (G′, ⋆′, 1′, []−1) are groups, then
their product is (G × G′, ·, (1, 1′), (()−1, []−1)). The elements are
pairs of elements (x, x′) where x is in G and x′ is in G′. The
multiplication · is given pointwise, i.e., on each component:

(x, x′) · (y, y′) = (x ⋆ y, x′ ⋆′ y′).

The unit of the group is (1, 1′). The inverse of (x, x′) is
((x)−1, [x′]−1).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

Definition
In any category, consider the special case of taking a product of an
object a with itself, i.e., a × a. The induced morphism for ⟨ida , ida⟩

as in
a

ida

~~

ida

∆
��

a × a

πa
ww

πa
''a a

is denoted as ∆ (Greek letter delta) and is called the diagonal
morphism.

Such morphisms will be very important in the rest of the course.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

Example

In Set, the diagonal morphism ∆: S −! S × S takes each
element s in S to (s, s) in S × S.

In Group, the diagonal morphism ∆: G −! G × G is a
group homomorphism that is defined as ∆(g) = (g, g). To
see that this is a homomorphism, consider

∆(x ⋆ y) = (x ⋆ y, x ⋆ y) = (x, x) ⋆′ (y, y) = ∆(x) ⋆′ ∆(y)

where ⋆′ is the multiplication in G × G.

In Top, ∆ works the same way it works in Set.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

a a × b b

a′ a′ × b ′ b ′

.

Definition

Let a × b be a product of a
and b.

Let a′ × b ′ be a product of
a′ and b ′.

Consider morphisms
f : a −! a′ and g : b −! b ′.

Since f ◦ πa and g ◦ πb

satisfy the universal
property of a′ × b ′, there is
an induced map.

This map is denoted f × g
and is called the product of
f and g and
f × g = ⟨f ◦ πa , g ◦ πb⟩.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

a a × b
πaoo

πb // b

a′ a′ × b ′ b ′

.

Definition
Let a × b be a product of a
and b.

Let a′ × b ′ be a product of
a′ and b ′.

Consider morphisms
f : a −! a′ and g : b −! b ′.

Since f ◦ πa and g ◦ πb

satisfy the universal
property of a′ × b ′, there is
an induced map.

This map is denoted f × g
and is called the product of
f and g and
f × g = ⟨f ◦ πa , g ◦ πb⟩.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

a a × b
πaoo

πb // b

a′ a′ × b ′
π′a

oo

π′b

// b ′.

Definition
Let a × b be a product of a
and b.

Let a′ × b ′ be a product of
a′ and b ′.

Consider morphisms
f : a −! a′ and g : b −! b ′.

Since f ◦ πa and g ◦ πb

satisfy the universal
property of a′ × b ′, there is
an induced map.

This map is denoted f × g
and is called the product of
f and g and
f × g = ⟨f ◦ πa , g ◦ πb⟩.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

a

f

��

a × b
πaoo

πb // b

g

��

a′ a′ × b ′
π′a

oo

π′b

// b ′.

Definition
Let a × b be a product of a
and b.

Let a′ × b ′ be a product of
a′ and b ′.

Consider morphisms
f : a −! a′ and g : b −! b ′.

Since f ◦ πa and g ◦ πb

satisfy the universal
property of a′ × b ′, there is
an induced map.

This map is denoted f × g
and is called the product of
f and g and
f × g = ⟨f ◦ πa , g ◦ πb⟩.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

a

f

��

a × b

f×g

��

πaoo
πb // b

g

��

a′ a′ × b ′
π′a

oo

π′b

// b ′.

Definition
Let a × b be a product of a
and b.

Let a′ × b ′ be a product of
a′ and b ′.

Consider morphisms
f : a −! a′ and g : b −! b ′.

Since f ◦ πa and g ◦ πb

satisfy the universal
property of a′ × b ′, there is
an induced map.

This map is denoted f × g
and is called the product of
f and g and
f × g = ⟨f ◦ πa , g ◦ πb⟩.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

a

f

��

a × b

f×g

��

πaoo
πb // b

g

��

a′ a′ × b ′
π′a

oo

π′b

// b ′.

Definition
Let a × b be a product of a
and b.

Let a′ × b ′ be a product of
a′ and b ′.

Consider morphisms
f : a −! a′ and g : b −! b ′.

Since f ◦ πa and g ◦ πb

satisfy the universal
property of a′ × b ′, there is
an induced map.

This map is denoted f × g
and is called the product of
f and g and
f × g = ⟨f ◦ πa , g ◦ πb⟩.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

There are two operations of morphisms: composition and taking
the product. How do these two operations respect each other?

d

h
��

fh

��

gh

��

⟨fh,gh⟩

yy

c

⟨f ,g⟩
��f

��

g

a × b

πa
ww

πb
''a b .

Theorem
Let a × b be the product of a
and b.

Consider f , and g

This induces ⟨f , g⟩.

Consider h.

This induces fh and gh.

This induces ⟨fh, gh⟩

We have
⟨f ◦ h, g ◦ h⟩ = ⟨f , g⟩ ◦ h.

That is, the composition with h on the right distributes over the
entries in the bracket.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

There are many consequences of this theorem.

Theorem
Let f : a −! a′, g : b −! b ′ and h : c −! a × b. Then we have

(f × g) ◦ h = ⟨f ◦ πa , g ◦ πb⟩ ◦ h = ⟨f ◦ πa ◦ h, g ◦ πb ◦ h⟩.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

The following relationship between the × and ◦ operations will be
very similar to other relationships between binary operations we
will find throughout this text. It is an instance of something called
the interchange law and is written like this

(f ′ × g′) ◦ (f × g) = (f ′ ◦ f) × (g′ ◦ g) : a × b −! a′′ × b ′′.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

Theorem

Let f : a −! a′, f ′ : a′ −! a′′, g : b −! b ′ and g : b ′ −! b ′′.
Assume that a × b , a′ × b ′, and a′′ × b ′′ exist. Then the two curved
lines are equal.

a

f

��

a × b
πoo

f×g

��

π //

(f ′×g′)◦(f×g)

��

(f ′◦f)×(g′◦g)

��

b

g

��

a′

f ′

��

a′ × b ′
πoo

f ′×g′

��

π // b ′

g′

��

a′′ a′′ × b ′′π
oo

π
// b ′′.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

Let us spend a few words meditating on the interchange law.

Think of the functions f , f ′, g, and g′ as processes.

Consider the composition operation, ◦, as doing one process
after another (sequential processes) and consider the product
operation, ×, as doing two processes independently (parallel
processes).

The interchange law (see Important Categorical Idea) tells us
how sequential and parallel process get along.

On the one hand, we can think of first performing the parallel
process f × g and then sequentially performing the parallel
process f ′ × g′.

On the other hand, we can think of parallel processing the
compositions f ′ ◦ f and g′ ◦ g.

The interchange law tells us that both ways of looking at these
processes are correct.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Central Idea

Important Categorical Idea

The Interchange Law.

In general, consider when there are two binary operations,
say ⊗ and ⊕, operating on a collection.

If the two operations satisfies the equality

(a ⊗ b) ⊕ (c ⊗ d) = (a ⊕ c) ⊗ (b ⊕ d)

then we call it an interchange law or interchange rule.

It means that each operation respects the other operation,
that is, each operation is a homomorphism in terms of the
other operation.

This idea arises many times in category theory and will be at
the heart of the theory of monoidal categories.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

Example

The interchange law is of interest in the category CompFunc of
computable functions. If f : T1 −! T2 and g : T3 −! T4, then one
should think of f × g : T1 × T3 −! T2 × T4 as a type of parallel
processing. The function f × g does each computation separately.
In contrast, for composable maps f and f ′, one can think of f ′ ◦ f as
sequential processing since one has to preform one process and
then the other.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product
We have seen the product of two objects. What about the product
of three objects?

Theorem

Let a, b and c be three objects in a category. If the products
a × (b × c) and (a × b) × c exist, then there is a unique
isomorphism α : a × (b × c) −! (a × b) × c and an inverse
α′ : (a × b) × c −! a × (b × c) such that α and α′ each commute
with all the projection maps as in this diagram:

a × (b × c)

π

��

π

&&

α //

g

��

(a × b) × c

π

xx

π

��

g′

��

α′
oo

a a × bπ
oo

π
// b b × cπ
oo

π
// c.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

Example

In Set, the associativity isomorphism for sets S,T , and U is
α : S × (T × U) −! (S × T) × U is defined for s ∈ S, t ∈ T, and
u ∈ U as

α((s, (t , u))) = ((s, t), u).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product
In a category with products, for every two objects a and b, what is
the relationship between a × b and b × a?

Theorem

In a category with products, for every two objects a and b, there is
a braid morphism br : a × b −! b × a which is induced by
projection maps as follows

a × b

πb

��

πa

��

br
��

b × a

πb
ww

πa
''

b a.

This means that br = ⟨πab
b , π

ab
a ⟩. This map is an isomorphism

which shows that a × b is isomorphic to b × a.
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Properties of a product

Theorem

Let t be a terminal object in a category. If a × t exists, then it is
isomorphic to a.

Proof.
The proof follows from the following commutative diagram:

a × t

πa

��

!

��

πa

��
a

ida
ww

!
''

⟨ida ,!⟩
��

a a × tπa
oo

!
// t .

□

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Central Idea

One of the amazing aspects of category theory is that if you have
some idea or construction and you turn all the arrows around to go
in the opposite direction, then you have a related construction.

Important Categorical Idea

Duality.

Many properties and structures in categories come in pairs.

For a given definition of a structure, one can make another
dual definition with the arrows going in the opposite direction.

This idea is called duality and happens very often.

If a structure is called “X,” then the dual structure is called
“coX.”

The coproduct is what happens when you turn around the arrows
of a product.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

Example

First let us look at the coproduct in Set and see what we can learn
about it.

Let S = {x, y, z} and T = {0, 1}.

The coproduct in Set is the disjoint union of these sets. In this
example the coproduct is just the union of both sets

S ⨿ T = {x, y, z, 0, 1}.

There are two inclusion functions incS : S −! S ⨿ T and
incT : T −! S ⨿ T. (Note, these are in the opposite direction
of the projection functions).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

Example

How does the disjoint union relate to other sets? Let us look at
three examples of other sets and functions. Keep the following
diagram in mind.

S
incS

''

kS

T
incT

ww

kT

~~

S ⨿ T

h
��

V .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

Example

Consider the set V = {r ,w, x, y, z, a, 0, 1, 2}. The sets S and
T are subsets of V and there are inclusion functions
kS : S −! V and kT : T −! V. While V has a feel of a disjoint
union, S ⨿ T is the real disjoint union because it contains
nothing besides S and T. There is an inclusion function
h : S ⨿ T −! V that makes the above triangles commute.
From this vantage point, think of S ⨿T as the smallest or “best
fitting” set that contains S and T. If there is any other set that
contains S and T, then S ⨿ T is the best and includes into it.

Consider the set V = {a, b , c, d, e} and two functions
kS : S −! V and kT : T −! V. Let us say kS(x) = b and
kT (0) = e. There is a function h : S ⨿ T −! V that unites the
information of kS and kT . Such a function has h(x) = b and
h(0) = e. The function h defined like this ensures that the two
triangles commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Motivating examples

Example

Consider the set V = {x′, y′, z′, 0′, 1′}. While this is not the
disjoint union of S and T, there still are obvious functions
kS : S −! V and kT : T −! V that take elements to their
prime versions. There is an isomorphism of sets
h : S ⨿ T −! V that takes every element h(x) = x′.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Coproduct

With these examples in mind, lets us define a coproduct in any
category.

Definition
Let A be a category with objects a and b. A coproduct of a and b
is an object a + b (also written a ⨿ b) with morphisms

a
inca

''

b
incb

ww

a + b

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Coproduct

Definition (Continued.)

These maps satisfy the following universal property: if there is any
other object c with two morphisms

a

ka

��

b

kb

��

c

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Coproduct

Definition (Continued.)
Then there exists a unique map h : a + b −! c which makes the
following two triangles commute

a
inca

''

ka

��

b
incb

ww

kb

��

a + b

h
��

c.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Coproduct

The morphisms ka : a −! c and kb : b −! c induce the morphism
a + b −! c. We will write this morphism as [ka , kb] : a + b −! c.
Notice that

[ka , kb] ◦ inca = ka and [ka , kb] ◦ incb = kb .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Coproduct

Example

As we showed just before the definition, in Set the coproduct is
simply the disjoint union.

Example

In computable functions CompFunc, the coproduct of two types
T1 and T2 is simply the disjoint union of T1 and T2. There are
obvious inclusion functions. The universal property is also easy to
see: if there is a computable function f1 : T1 −! T ′ and a
computable function f2 : T2 −! T ′ then there is a computable
function h : T1 ⨿ T2 −! T ′. The function h depends on the input. If
the input is of type T1, then h executes f1 on it. If the input is of
type T2, then h executes function f2 on the input, i.e.,

h(x) =

f1(x) if x is of type T1

f2(x) if x is of type T2 .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Coproduct

Many facts about coproducts are similar to products.

Coproducts are unique up to a unique isomorphism.

If a category has the property that for any two objects a
coproduct exists, then we say that the category “has binary
coproducts”.

For the coproduct, the following two maps are inverse of each
other

HomA(a + b , c)
()◦inca , ()◦incb

//

HomA(a, c) × HomA(b , c)
[,]

oo

and hence the Hom sets are isomorphic.

We can use this as an equivalent definition of a coproduct.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Coproduct

More facts about coproducts that are similar to products.

There is a unique isomorphism

α : a + (b + c) −! (a + b) + c.

There is a codiagonal morphism, ∇, and a cobraid
morphism, cobr for the coproduct. They are given by the
following two diagrams

a
inca

''

ida

��

a
inca

ww

ida

��

a
inca

''

inca

��

b
incb

ww

incb

��

a + a

∇

��

a + b

cobr
��

a b + a

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.1: Products and Coproducts

Foreshadowing

Chapter 3: Structures Within Categories
Section 3.2: Limits and Colimits

Equalizers and Coequalizer
Pullbacks and Pushouts
General Limits and Colimits

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

The Product and Coproduct Again

Limits and colimits are generalizations of products and coproducts.
Before we move on to describe general limits, it is important to
understand a product from a different perspective. One can think
of a product of objects a and b in the category as completeingthe
diagram or a completion of a diagram where a and b are points of
a diagram.

a b

In other words, the product and the projection maps from the
product to a and b are like a pot cover on a and b.

a × b
πb

''

πa

wwa b .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

The Product and Coproduct Again

The universal property, says a × b is the “best” way to complete
the diagram. That means if there is any other completion c of a
and b with maps ka : c −! a and kb : c −! b then there is a
unique map h : c −! a × b making all the triangles in this diagram

c

kb

ka

��

h ∃!
��

a × b

πb
''

πa
wwa b .

commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

The Product and Coproduct Again

In a similar way, we might say that a ⨿ b is the best way to
complete the diagram “from the bottom”:

a
inca

''

ka

��

b
incb

ww

kb

��

a ⨿ b

h ∃!
��

c.

We say we are cocompleting the diagram or this is a
cocompletion of the diagram.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

The Product and Coproduct Again

While binary products and coproducts are the completion of
diagrams with two objects, limits and colimits are the
completions and cocompletions of any type of diagram.

For example, given a diagram with four objects a1, a2, a3 and
a4,, we can talk of their product a1 × a2 × a3 × a4. (See next
slide.)

It will have projection maps π1 : a1 × a2 × a3 × a4 −! a1,
π2 : a1 × a2 × a3 × a4 −! a2, π3 : a1 × a2 × a3 × a4 −! a3, and
π4 : a1 × a2 × a3 × a4 −! a4.

This product satisfies the following universal property: if there
exists an object c and morphisms g1 : c −! a1, g2 : c −! a2,
g3 : c −! a3 and g4 : c −! a4, then there exists a unique
h : c −! a1 × a2 × a3 × a4 such that the expected diagrams
commute.

In a similar way we can talk about the colimit of this diagram.
We denote the colimit as a1 + a2 + a3 + a4.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

The Product and Coproduct Again

c

~~ �� ��

��

a1 × a2 × a3 × a4

vv }} !! ((a1

((

a2

!!

��

a3

}}

��

a4

vv

~~

a1 + a2 + a3 + a4

��

d
The limit and colimit of four objects.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

The Product and Coproduct Again

In the same way, we can define the product and coproduct of any
number of objects. In general, for a collection of objects {ai} where
i is an index in a set S, then the product and coproduct are
denoted as ∏

i∈S

ai and
∐
i∈S

ai .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Before we go onto more complicated diagrams, take a moment
and think about completing simpler diagrams.

Exercise
Show that the limit of a diagram with just one object a is
isomorphic to a. Show this is true for colimits also.

Exercise
Show that a limit of the empty diagram is a terminal object of the
category. Show that the colimit of the empty category is the initial
object of the category.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits
Products are special types of limits and coproducts are special
types of colimits. Till now the diagrams we dealt with were discrete
(without morphisms). Let’s look at diagrams with some morphisms.
Consider the simple diagram:

a f // b .

The limit of this diagram will be an object c with two maps
πa : c −! a and πb : c −! b such that the following triangle
commutes

c
πa

��

πb

��

a f // b .

It satisfies the universal property that if there is any element d with
maps ga : d −! a and gb : d −! b such that f ◦ ga = gb then
there is a unique h : d −! c such that

d

gb

��

ga

��

h ∃!
��

c
πa

��

πb

��

a f // b

commutes. If you set d = a, ga = ida and gb = f , you will see that
the limit c is isomorphic to a. In contrast, using the same trick, you
can show that the colimit of this diagram is isomorphic to b.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

We will examine the different types of limits and colimits in the
category of sets.

Example

In Set, given a set function f : S −! T, the limit will be set R with
two functions pS : R −! S and pT : R −! T such that f ◦ pS = pT .
This set and these maps will satisfy a universal property. It is not
hard to see that the set

R = {(s, f(s)) ∈ S × T }

with the obvious projection functions satisfies the requirement of
being a limit. This set is usually called the graph of f .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Example

In Set, given a set function f : S −! T, the colimit will be set V
with two functions incS : S −! V and incT : T −! V such that
incT ◦ f = incS . This set and these maps will satisfy a universal
property. The requirement is satisfied by the set

V = (S + T)/ ∼

where ∼ is the relation on the disjoint union that has s ∈ S
equivalent to f(s) ∈ T. The functions incS and incT are the obvious
inclusion functions.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits
Consider the diagram

a
f //

g
// b .

A limit for this diagram will be an object c and two maps e : c −! a
and j : c −! b such that f ◦ e = j = g ◦ e as in

c
j

��

e

��
a

f //

g
// b .

We write the requirement as f ◦ e = g ◦ e (without mentioning j)
and then write the required commutative diagram as

c e // a
f //

g
// b .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

The universal property says that, for any object d and map
k : d −! a such that f ◦ k = g ◦ k , there is a unique map
h : d −! c such that the triangle in the following diagram
commutes:

d
k

&&

h ∃!

��

c e // a
f //

g
// b .

We call such a limit an equalizer of f and g.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Example

In Set, an equalizer of set functions f : S −! T and g : S −! T is
a set

R = {s ∈ S : f(s) = g(s)}.

There is an inclusion map e : R ↪−! S. This set and inclusion map
satisfy the universal property.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Let us look carefully of a colimit of the same diagram. Such a
colimit is called a coequalizer.

a
f //

g
// b

c

d

Consider the same diagram.

A coequalizer is an object c

and a map p : b −! c such
that p ◦ f = p ◦ g.

Furthermore, if there is any
d and map k : b −! d such
that k ◦ f = k ◦ g,

then there is a unique
h : c −! d such that the
triangle commutes.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Let us look carefully of a colimit of the same diagram. Such a
colimit is called a coequalizer.

a
f //

g
// b c

d

Consider the same diagram.

A coequalizer is an object c

and a map p : b −! c such
that p ◦ f = p ◦ g.

Furthermore, if there is any
d and map k : b −! d such
that k ◦ f = k ◦ g,

then there is a unique
h : c −! d such that the
triangle commutes.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Let us look carefully of a colimit of the same diagram. Such a
colimit is called a coequalizer.

a
f //

g
// b

p
// c

d

Consider the same diagram.

A coequalizer is an object c

and a map p : b −! c such
that p ◦ f = p ◦ g.

Furthermore, if there is any
d and map k : b −! d such
that k ◦ f = k ◦ g,

then there is a unique
h : c −! d such that the
triangle commutes.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Let us look carefully of a colimit of the same diagram. Such a
colimit is called a coequalizer.

a
f //

g
// b

p
//

k
&&

c

d

Consider the same diagram.

A coequalizer is an object c

and a map p : b −! c such
that p ◦ f = p ◦ g.

Furthermore, if there is any
d and map k : b −! d such
that k ◦ f = k ◦ g,

then there is a unique
h : c −! d such that the
triangle commutes.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Let us look carefully of a colimit of the same diagram. Such a
colimit is called a coequalizer.

a
f //

g
// b

p
//

k
&&

c

h ∃!
��

d

Consider the same diagram.

A coequalizer is an object c

and a map p : b −! c such
that p ◦ f = p ◦ g.

Furthermore, if there is any
d and map k : b −! d such
that k ◦ f = k ◦ g,

then there is a unique
h : c −! d such that the
triangle commutes.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Example

In Set, a coequalizer for functions f : S −! T and g : S −! T is
the set V = T/ ∼ where ∼ is the equivalence relation that is
generated by f(s) ∼ g(s) for all s ∈ S. The map p : T −! V takes
every element t ∈ T to the equivalence class it belongs to in V, i.e.,
t 7! [t].

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Let us move on to more complicated diagrams. We will no longer
make a dashed line around the diagrams that we are completing.

e

a ×c b

b

g

��

a
f

// c

Consider the following diagram.

The limit is an object a ×c b called
a pullback

and three maps πa , πc , and πb

such that f ◦ πa = πc = g ◦ πb .
(There is no purpose in displaying
πc .)

They satisfy the following universal
property: for any object e and
morphisms ka , kc , and kb such that
f ◦ ka = kc = g ◦ kb ,

there is a unique h : e −! a ×c b
such that the triangles commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Let us move on to more complicated diagrams. We will no longer
make a dashed line around the diagrams that we are completing.

e

a ×c b b

g

��

a
f

// c

Consider the following diagram.

The limit is an object a ×c b called
a pullback

and three maps πa , πc , and πb

such that f ◦ πa = πc = g ◦ πb .
(There is no purpose in displaying
πc .)

They satisfy the following universal
property: for any object e and
morphisms ka , kc , and kb such that
f ◦ ka = kc = g ◦ kb ,

there is a unique h : e −! a ×c b
such that the triangles commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Let us move on to more complicated diagrams. We will no longer
make a dashed line around the diagrams that we are completing.

e

a ×c b
πb //

πa

��

b

g

��

a
f

// c

Consider the following diagram.

The limit is an object a ×c b called
a pullback

and three maps πa , πc , and πb

such that f ◦ πa = πc = g ◦ πb .
(There is no purpose in displaying
πc .)

They satisfy the following universal
property: for any object e and
morphisms ka , kc , and kb such that
f ◦ ka = kc = g ◦ kb ,

there is a unique h : e −! a ×c b
such that the triangles commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Let us move on to more complicated diagrams. We will no longer
make a dashed line around the diagrams that we are completing.

e

ka

��

kb

**a ×c b
πb //

πa

��

b

g

��

a
f

// c

Consider the following diagram.

The limit is an object a ×c b called
a pullback

and three maps πa , πc , and πb

such that f ◦ πa = πc = g ◦ πb .
(There is no purpose in displaying
πc .)

They satisfy the following universal
property: for any object e and
morphisms ka , kc , and kb such that
f ◦ ka = kc = g ◦ kb ,

there is a unique h : e −! a ×c b
such that the triangles commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Let us move on to more complicated diagrams. We will no longer
make a dashed line around the diagrams that we are completing.

e
h

∃! ##

ka

��

kb

**a ×c b
πb //

πa

��

b

g

��

a
f

// c

Consider the following diagram.

The limit is an object a ×c b called
a pullback

and three maps πa , πc , and πb

such that f ◦ πa = πc = g ◦ πb .
(There is no purpose in displaying
πc .)

They satisfy the following universal
property: for any object e and
morphisms ka , kc , and kb such that
f ◦ ka = kc = g ◦ kb ,

there is a unique h : e −! a ×c b
such that the triangles commute.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Notice that a product is a special type of pullback:

The product is a pullback where the target c is a terminal
object of the category. In that case, there is a unique
morphism from every element, and hence, the square always
commutes.

Notice also that an equalizer is also a special type of pullback:

It is the case where b = a, i.e., the two maps of the pullback
diagram have the same source.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Example

In Set, a pullback is sometimes called a fiber product of sets.
Let f : S −! T and g : R −! T then the pullback is the set

P = {(s, r) ∈ S × R : f(s) = g(r)}.

There are projection functions πS : P −! S and πR : P −! R
which satisfy the universal properties.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Example

A special case of a fiber product is when g : R ↪−! T is an
inclusion of a subset. We then have the pullback diagram

{s ∈ S : f(s) ∈ R}� _

��

// R� _
g
��

S
f

// T .

The fiber product of f and g is isomorphic to the set

f−1(R) = {s ∈ S : f(s) ∈ R}

which is called the preimage of f for the subset T. This is an
example of an instance of a general theorem that the pullback of a
monic is a monic.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

The colimit of the diagram

a f //

g

��

b

c

is called a pushout of f and g.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

The colimit consists of an object c +a b

and maps ha , hb , and hc such that hb ◦ f = ha = hc ◦ g.

The universal property says that for any object e and any
maps kb , ka , and kc such that kb ◦ f = ka = kc ◦ g

there is a unique h that makes the following diagram commute

a f //

g

��

b

hb

��

kb

��

c
hc //

kc
**

c +a b
h

∃!
##
e.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Example

In Set, a pushout of the maps f : S −! R and g : S −! T is a set
P = (R + T)/ ∼ where ∼ is the equivalence relation on the set
R + T generated by the relation for all s ∈ S, f(s) ∼ g(s). There
are obvious inclusions of R and T into P.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Basic Limits

Notice that a coproduct is a special type of pushout:

It is the case where a is an initial object of the category, and
hence, the square always commutes.

Similarly, a coequalizer is a special type of pushout where
a = c.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Limits and Colimits

Now that we have seen many examples of limits and colimits, let
us formally define a limit and colimit of any diagram in a category.

Definition
For an arbitrary diagram D in a category, a limit is an object
of the category, denoted lim −D, and morphisms from that
object to every object in D such that the appropriate diagrams
commute. The object and projections must satisfy the
universal properties outlined before.

A colimit of a diagram D in the category will be an object,
denoted lim−!D, with morphisms from every object in the
diagram to the colimit that makes the appropriate
commutative diagram. The object and morphisms must satisfy
the universal properties outlined above.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Limits and Colimits

Since there are maps from the limit to all the objects of the
diagram, and there are maps from all the objects of the diagram to
the colimit, we might write this as

lim −D −! D −! lim−!D.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Limits and Colimits

There is a way of getting a limit by using a product and then taking
an equalizer. First a simple case. Let us revisit the case where we
took a limit of single arrow f : a −! b. Consider the object a × b
which is the product of the two objects in the diagram. There are
two projection maps as in the following

a × b
πa

||

πb

""

a
f

// b .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Limits and Colimits
Notice that there are two maps from a × b to b: πb and f ◦ πa . We
can now take the equalizer of these two maps as follows

c e // a × b
f◦πa //

πb
// b .

Setting pa = πa ◦ e and pb = πb ◦ e = f ◦ πa ◦ e as in

c

pa

��

pb

��

e
��

a × b

πa
||

πb
""

a
f

// b .

it is easy to see that c is not only the equalizer of the two maps, but
it is also the limit of the diagram f : a −! b.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Limits and Colimits

We can generalize this from a single arrow to all finite diagrams.
any diagram with a finite number of objects and morphisms.

Theorem

Limits of finite diagrams can be obtained using finite products and
equalizers.

See proof in the book.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Limits and Colimits

Theorem

Limits of finite diagrams can be obtained using pullbacks and a
terminal object.

Proof.
If there is a terminal object and pullbacks, we saw that we can
create all finite products. Similarly equalizers can be seen as a
type of pullback. □

There is, of course, a dual theorem.

Theorem

Colimits of finite diagrams can be obtained using coproducts and
coequalizers. Equivalently, all finite colimits can be obtained using
pushouts and an initial object.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.2: Limits and Colimits

Foreshadowing

Chapter 3: Structures Within Categories
Section 3.3 Slices and Coslices

Slices
Coslices

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.3 Slices and Coslices

Slice Categories
There are certain constructions that make the morphisms of one
category into the objects of another category.

Definition
Given a category A and an object a of that category, the slice
category, A/a, read “A over a” is a category whose objects are
pairs (b , f : b −! a) where b is an object of A and f is a
morphism of A whose target is a. The morphisms of A/a from
(b , f : b −! a) to (b ′, f ′ : b ′ −! a) are morphisms g : b −! b ′ of
A that make the following triangle commute.

b
f

''
g

��

a.

b ′
f ′

77

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.3 Slices and Coslices

Slice Categories

Example

Some examples of slice categories:

For R, the real numbers thought of as an element of Set, the
category of Set/R is the collection of all R-valued functions.

For a partial order category A(P,≤) and p ∈ P the category
A(P,≤)/p is the partial order category of all elements below
p, denoted p #.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.3 Slices and Coslices

Coslice Categories

There is the dual notion of a slice category:

Definition
Given a category A and an object a of that category, the coslice
category, a/A, read “A under a,” is a category whose objects are
pairs (b , f : a −! b) where b is an object of A and f is a
morphism of A whose source is a. The morphisms of a/A from
(b , f : a −! b) to (b ′, f ′ : a −! b ′) are morphisms g : b −! b ′ of
A that make the following triangle commute.

b

g

��

a

f

77

f ′
''

b ′.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.3 Slices and Coslices

Coslice Categories

Example

Some examples of a coslice category:

Consider the one-element set {∗}. The category {∗}/Set has
objects that are sets with a function that picks out a
distinguished element of the set. So an object in the category
is effectively a pair (S, s0) where S is a set and s0 is a distinct
element of that set. The morphisms from (S, s0) to (T , t0) are
set functions that preserve the distinguished element. That is,
f : S −! T such that f(s0) = t0. This is the category of
pointed sets.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.3 Slices and Coslices

Coslice Categories

Example (Continued)

Similarly, there is the category {∗}/Top, the category of
pointed topological spaces. Where the objects are
topological spaces with a distinguished object and morphisms
are continious maps that preserve the distinguished point.

For a partial order category A(P,≤) and p, an element in the
partial order, the category p/A(P,≤) is p ", the partial order
of the elements above p.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.3 Slices and Coslices

Lecture Slides

Mini-course:

Self-Referential Paradoxes

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Foreshadowing

Chapter 3: Structures Within Categories
Section 3.4: Mini-course: Self-Referential Paradoxes

The Barber Paradox
Russell’s Paradox
Hetrological Paradox
A philosophical interlude on paradoxes
Cantor’s Inequality
The Main Theorem About Self-Referential Paradoxes
Turing’s Halting Problem
The Contrapositive of the Main Theorem About Self-Referential
Paradoxes
Fixed Points in Logic
Gödel’s Incompleteness Theorem
Tarski’s Theorem
Parikh Sentences
Epimenides and the Liar
Time Travel Paradoxes

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Foreshadow

With the simple idea of a product in a category, we know enough
category theory to describe some of the most profound and
influential theorems in mathematics and computer science of the
past hundred and fifty years. In the next few pages, we will meet

Georg Cantor’s theorem that shows there are different types
of infinity;

Bertrand Russell’s paradox which proves that simple set
theory is inconsistent;

Kurt Gödel’s famous incompleteness theorems that
demonstrates a limitation of the notion of proof;

Alan Turing’s realization that there are some problems that
can never be solved by a computer;

and much more.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Foreshadow

What is truly amazing is that all these diverse and important
theorems are consequences of a single simple theorem of
category theory. This demonstrates the true power of category
theory! What is still more shocking is that the central idea of this
simple theorem goes back some 2,500 years ago to a conundrum
about language called the Epimenides paradox. This conundrum
shows that language can talk about itself, i.e. has self-reference. In
the coming pages, we will see that not only language, but many
systems, have the ability to have objects in the system refer to
other objects within the system and even to themselves. This is the
core of self-reference. It is shown that sets, language, logic,
computers, and many other systems have the ability of
self-reference. With self reference, one goes on to form
self-referential paradoxes which are contradictions that come
through an object using self reference to negate itself. This is the
explanation of all the important theorems above.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Some Preliminaries

Before we leap into all the examples, there is one technical
definition that we have to describe.

Let S be a set and 2 = {0, 1} be a set with two values which
will correspond to true and false.

We saw that a function g : S −! 2 is a characteristic function
and describes the subset of S that g takes to 1.

Now consider a set function f : S × S −! 2. The function f
accepts two elements of S and outputs either 0 or 1.

For any element s0 of S, consider the function f where the
second input is always s0. We say that s0 is “hardwired into
the function.” This gives us a function

f(, s0) : S −! 2

with only one input.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Some Preliminaries

Since this function goes from S to 2, it is also a characteristic
function and describes the subset of S. The subset is

{s ∈ S : f(s, s0) = 1}.

For different f ’s and different elements of S, there will be
different characteristic functions which describe different
subsets.

We now ask a simple question: given g : S −! 2 and
f : S × S −! 2, is there an s0 in S such that g characterizes
the same subset as f(, s0).

To restate, for a given g and f , does there exist an s0 ∈ S such
that g() = f(, s0)?

If such an s0 exists, then we say g can be represented by f ,
or g is representable by f .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Barber Paradox

Bertrand Russell was not only a great logician, mathematician, and
philosopher. He was also a great expositor. In order to explain
some of the central ideas of self-referential systems to a general
audience, he supposedly conjured up the barber paradox.
Imagine an isolated village on top of a mountain in the Austrian
alps where it is difficult for villagers to leave and for itinerant
barbers to come to the village. This village has exactly one barber
and there is a strict rule that is enforced:

A villager cuts his own hair if and only if he does not go to the
single barber.

This makes sense. After all, if the villager will cut his own hair, why
should he go to the barber? On the other hand, if the villager goes
to the barber, he will not need to cut his own hair.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Barber Paradox

This works out very well for all the villagers except for one: the
barber. Who cuts the barber’s hair? If the barber cuts his own hair,
then he is violating the village ordinance by cutting his own hair
and having his hair cut by the barber. If he goes to the barber, then
he is also cutting his own hair. This is illegal! What is an honest
law abiding barber to do?

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Barber Paradox
Now we formalize the problem. Let the set Vill consist of all the
villagers in the village. Let us also remember our set 2 = {0, 1}.
The function f : Vill × Vill −! 2 describes who cuts whose hair in
the village. It is defined for villagers v and v′ as

f(v , v′) =


1 : if the hair of v is cut by v′

0 : if the hair of v is not cut by v′.

We can now express the village ordinance as saying that for all v

f(v , v) = 1 if and only if f(v , barber) = 0.

The problem arises because this is true for all v including v =
barber. In this case we get:

f(barber, barber) = 1 if and only if f(barber, barber) = 0.

This is clearly a contradiction and cannot be true.
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Barber Paradox

Let us be more categorical. Because Set has products, there is
the diagonal function ∆: Vill −! Vill × Vill that is defined as
∆(v) = (v , v). This function is at the core of self reference. It helps
us see what f says when you evaluate an element v with itself, i.e.,
f(v , v) and f(barber, barber). There is also a negation function
NOT : 2 −! 2 defined as NOT(0) = 1 and NOT(1) = 0 that
swaps true and false. This function will be used to negate
properties.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Barber Paradox

Composing f with ∆ and NOT gives us g : Vill −! 2 as in the
following commutative diagram:

Vill × Vill
f // 2

NOT

��

Vill

∆
99

g
// 2.

That is,
g = NOT ◦ f ◦∆.

For a villager v, g(v) = NOT(f(∆(v))) = NOT(f(v , v)). So
g(v) = 1 if and only if NOT(f(v , v)) = 1 if and only if f(v , v) = 0 if
and only if the hair of v is not cut by v. In other words g(v) = 1 if
and only if v does not cut his own hair. In terms of self reference,
the function g is the characteristic function of the subset of
villagers who do not cut their own hair.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Barber Paradox

We now ask the simple question: can g be represented by f? In
other words, is there a villager v0 such that g() = f(, v0)? The
function g describes all those villagers who do not cut their own
hair. It stands to reason that the barber is the villager who can
represent g. After all, f(, barber) describes all the villagers who
get their hair cut by the barber. We are asking if g() is the same
function as f(, barber) and whether they characterize the same
subset of villagers? Another way to pose this question is as
follows: is the set of villagers who do not cut their own hair the
same as the set of villagers who get their hair cut by the barber?

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Barber Paradox

The answer is no. While it is true that for most v ∈ Vill

g(v) = f(v , barber),

it is not true for v = barber. If it were true for the barber, then we
would have

g(barber) = f(barber, barber).

But the definition of g is given as
g(barber) = NOT(f(barber, barber)). We conclude that g is not
represented by f(, barber), in fact it is not represented by any
f(, v0). That is, the set of villagers who do not cut their own hair
cannot be the same as the set of villagers who get their hair cut by
anyone.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Barber Paradox

It will be helpful to describe this problem in matrix form. Let us
consider the set Vill as {v1, v2, v3, . . . , vn}. We can then describe
the function f : Vill × Vill −! 2 as a matrix. Let us say that the
barber is v4. Notice that every row has exactly one 1 (every villager
gets their haircut in only one place): either along the diagonal (the
villager cuts their own hair) or in the v4 column (the villager goes to
the barber). Since it can only be one or the other, the numbers
along the diagonal 1, 0, 1, ?, 0, . . . , 1 are almost the exact opposite
of the numbers along the v4 column 0, 1, 0, ?, 1, . . . , 0. This is a
restatement of the rule of the village. There is only one problem:
what is in the (v4, v4) position? We put a question mark in the
matrix because that entry cannot be the opposite of itself. This way
of seeing the problem will arise over and over again. Here we can
see why these paradoxes are related to proofs called diagonal
arguments.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Barber Paradox

Cutter

f v1 v2 v3 v4 v5 · · · vn

C
ut

te
e

v1 1 0 0 0 0 · · · 0

v2 0 0 0 1 0 · · · 0

v3 0 0 1 0 0 · · · 0

v4 0 0 0 ? 0 · · · 0

v5 0 0 0 1 0 · · · 0
...
...

...
. . .

...

vn 0 0 0 0 0 · · · 1
The function f as a matrix. Notice the diagonal is the opposite of
the barber, column v4.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Barber Paradox — Resolution

What is the resolution to this paradox? There are many attempts to
solve this paradox, but they are not very successful. For example,
the barber resigns as barber before cutting his own hair. (But that
means that there is no barber in the town). Or the wife of the
barber cuts the barber’s hair. (But that means that there are two
barbers in the town.) Or the barber is bald. Or the barber is a
long-haired hippie. Or the rule is ignored while the barber cuts his
own hair, etc. All these are saying the same thing: the village with
this (contrived and) important rule cannot exist. Because if the
village with this rule existed, there would be a contradiction. There
are no contradictions in the physical world. The only way the world
can be free of contradictions is if this proposed village with this
strict rule does not exist.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Russell’s Paradox

Bertrand Russell described the barber paradox to help explain
a deeper, more important problem that he formulated and is
called Russell’s paradox.
This paradox concerns sets which are considered the
foundation of much of mathematics.
As is known, sets contain elements. The elements can be
anything. In particular an element in a set can be a set itself.
Here are a few sets to consider.

A = {x, y, z} simply has three elements.
B = {s, t , {x, y}} has as the set {x, y} as an element.
C = {s, t , u,A } contains the set A as an element.

It is not strange to have sets as elements of sets.
The set of all classes given in a university can be thought of as
containing elements where each element is the set of students
in a class.
For a set of certain people, one can imagine every person as
the set of their cells.
Consider the set D = {x, y,D}. This set contains itself.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Russell’s Paradox

A set containing itself is not so strange. Here are three examples
of sets that contain themselves:

The set of all ideas discussed in this book.

The set that contains all the sets that have more than three
objects.

The set of abstract ideas.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Russell’s Paradox

If you do not like sets that contain themselves, you might want to
consider the R which is the collection of all sets that do not contain
themselves. Formally,

R = {set S : S does not contain S} = {S : S < S}.

Going back to our simple examples of sets, we have A ∈ R, B ∈ R,
C ∈ R while D < R.

Now ask yourself the simple question: does R contain itself? In
symbols, we ask if R ∈ R? Let us consider the possible answers. If
R ∈ R, then since R fails to satisfy the requirements of being a
member of R, we get that R < R. In contrast, if R < R, then since
R satisfies the requirement of belonging to R, we have that R ∈ R.
This is a contradiction.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Russell’s Paradox

Let us formulate this. There is a collection of all sets called Set .
There is also a two-place function f : Set × Set −! 2 that
describes which sets are elements of which sets.

f(S,S′) =


1 : if S ∈ S′

0 : if S < S′.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Russell’s Paradox

We can use this f to describe all sets that do not contain
themselves as follows. Consider g formed by composing the
following maps:

Set × Set
f // 2

NOT

��

Set

∆
99

g
// 2

The value g(S) is defined to be NOT(f(S,S)). This means
g(S) = 1 if and only if f(S,S) = 0. In terms of self reference, g is
the characteristic function of those sets that do not contain
themselves.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Russell’s Paradox

Now we ask the simple question: does there exist a set R such
that g() is represented by f as f(,R). That is, we want a set R
such that

g(S) = 1 if and only if f(S,R) = 1

and
g(S) = 0 if and only if f(S,R) = 0.

This means that R contains only the sets that do not contain
themselves. The problem is that if such a set R exists, then we can
ask about g(R), i.e., is R ∈ R. On the one hand, g(R) is defined
as NOT(f(R ,R)) and on the other hand, if f represents g with R,
then g(R) = f(R ,R). That is,

f(R ,R) = g(R) = NOT(f(R ,R)).

This is a contradiction.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Russell’s Paradox

Let us look at Russell’s paradox from a matrix/array point of view.
Let us consider the infinite collection Set as {S1,S2,S3, . . .}. We
can then describe the function f : Set × Set −! 2 as the following
matrix.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Russell’s Paradox

Subset

f S1 S2 S3 S4 S5 · · ·

E
le

m
en

t

S1 NOT(1)=0 0 0 0 1 · · ·

S2 0 NOT(0)=1 0 1 0 · · ·

S3 0 0 NOT(1)=0 0 0 · · ·

S4 1 0 0 NOT(1)=0 0 · · ·

S5 0 1 0 1 NOT(0)=1 · · ·

...
...

...
. . .

The function f as a matrix. The function g is the changed diagonal
and it is different from every column. This is a way of saying that
the diagonal (which is g) cannot be represented by any column of
the array.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Russell’s Paradox — Resolution

Let us consider how to deal with this paradox.

The only way to avoid this contradiction is to accept that the
function g cannot be represented by any element of Set .

This translates into meaning that the collection of all sets that
do not contain themselves does not form a set, i.e., this
collection is not an element of Set .

While such a collection seems to be a well-defined notion, we
have shown that if we say that this collection is an element of
Set , then there is a contradiction. Mathematicians went on
and used this to make a distinction between a “set” and a
“class.”

They declared that classes are collections that are not sets.

This distinction plays major roles in logic and higher
mathematics.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Heterological Paradox

Now for a linguistic paradox. The heterological paradox, also
called Grelling’s paradox after Kurt Grelling, who first formulated
it, is about adjectives (words that modify nouns.) Consider several
adjectives and ask if they describe themselves, that is, if the
adjective has the property of the adjective. “English” is English. In
contrast, “French” is not French (“Francais” is Francais.) “German”
is not German (“Deutsch” is Deutsch.) The word “abbreviated” is
not abbreviated, “unabbreviated” is unabbreviated and
“hyphenated” is not hyphenated, etc. We see that some adjectives
describe themselves and some adjectives do not describe
themselves. Call all adjectives that describe themselves
“autological.” In contrast, call all adjectives that do not describe
themselves as “heterological.” We can start making a table of
many adjectives.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Heterological Paradox

autological heterological

English non-English

Francais French

Deutsch German

noun verb

unhyphenated hyphenated

unabbreviated abbreviated

polysyllabic monosyllabic
...

...

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Heterological Paradox

It seems that we can split all adjectives into these two groups. Is
that true? Let us ask a simple question. Is “heterological”
autological or heterological? That is, does the adjective
“heterologoical” belong on the left side or the right side of the
table? Let us go through the two possibilities.

If “heterological” is autological, then it is not heterological and
it does not describe itself. This means it is heterological.

If “heterological” is heterological, then the adjective does
describe itself and that makes it autological and not
heterological.

We have a contradiction.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Heterological Paradox

Let us formulate this paradox categorically. There is a set Adj of
adjectives and a function f : Adj × Adj −! 2 which is defined for
adjectives a and a′ as follows:

f(a, a′) =


1 : if a is described by a′

0 : if a is not described by a′.

Use f to formulate g as the composition of the following three
maps:

Adj × Adj f // 2
NOT

��

Adj

∆
::

g
// 2.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Heterological Paradox
In terms of self reference, the function g is the characteristic
function of those adjectives that do not describe themselves. Can
g be represented by some element in Adj? Is there some
adjective, say “heterological,” that can be used in f to represent g?
That is, is it true that g() = f(, “heterological”)? We are asking if
the subset of adjectives that do not describe themselves can be
described by the word “heterological.” If this was true, we would
have that for all adjectives A,

g(A) = f(A , “heterological”).

But this cannot be true because then we would have that

g(“heterological”) = f(“heterological”, “heterological”).

But that would give a contradiction because by the definition of g
we have

g(“heterological”) = NOT(f(“heterological”, “heterological”)).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Heterological Paradox — Resolution

The only conclusion we can come to is that g() cannot be
represented by f . That is, the set of all adjectives that do not
describe themselves cannot be represented by
“heterological”. However, that is exactly the definition of
“heterological”!
How do we avoid this little paradox? There are two usual ways
of resolving this paradox.

Many philosophers say that the word “heterological” cannot
exist. After all, we just showed that it is not always
well-defined. We cannot determine if a certain adjective
(“hetrological”) is heterological or not.
Another more obvious solution is to just ignore the problem.
Human language is inexact and full of contradictions. Every
time we use an oxymoron, we are stating a contradiction.
Every time we ask for another piece of cake while lamenting
the fact that we cannot lose weight, we are stating a
contradiction. We can safely ignore the fact that heterological
is not well-defined for only one adjective.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

A philosophical interlude on paradoxes

The word “paradox” has many different definitions. For a logician, a
paradox is a process where an assumption is made, and through
valid reasoning, a contradiction is derived. We can visualize this as

Assumption =⇒ Contradiction.

The logician then concludes that since the reasoning was valid and
the contradiction cannot happen, it must be that the assumption
was wrong. This is very similar to what mathematicians call “proof
by contradiction” and philosophers call “reductio ad absurdum.” In
a sense, a paradox is a method of showing that the assumption is
not part of rational thought. If one accepts the assumption, one will
come to a contradiction which is so dangerous to rational thought.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

A philosophical interlude on paradoxes

We have so far seen the same pattern of proof in three different
areas:

villagers

sets

adjectives

In all three of the above paradoxes, the assumption is that the g
function can be represented by the f function. A contradiction is
then derived and we conclude that g is not represented by f . These
three examples highlight three different realms where the alleged
contradictions might be found. Let us examine these carefully.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

A philosophical interlude on paradoxes

The Physical
Universe

The Mental and
Linguistic Universe

Science and
Mathematics

Contradictions can occur in gray areas. White areas cannot have
contradictions.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

A philosophical interlude on paradoxes

The Physical Universe. A village with a particular rule is part of
the physical universe. The physical universe does not have any
contradictions. Facts and properties simply are and no object can
have two opposing properties. Whenever we come to such
contradictions, we have no choice but to conclude that the
assumption was wrong.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

A philosophical interlude on paradoxes

The Mental and Linguistic Universe. In contrast to the physical
universe, the human mind and human language — that the mind
uses to express itself — are full of contradictions. We are not
perfect machines. We have a lot of different contradictory parts
and desires. An oxymoron is a small contradiction that we all use
in our speech. We all have conflicting thoughts in our head and
these thoughts are expressed in our speech. So when an
assumption brings us to a contradiction in our thought or language,
we do not need to take it very seriously. If an adjective is in two
opposite classifications, it does not really bother us. In such a
case, we cannot go back to our assumption and say it is wrong.
The entire paradox can be ignored.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

A philosophical interlude on paradoxes

Science and Mathematics. There are, however, parts of human
thought and language where we cannot tolerate contradictions:
science and mathematics. These areas of exact thought are what
we use to discuss the physical world (and more). If science and
math are to discuss / describe / model / predict the
contradiction-free physical universe, then we better make sure that
no contradictions occur there. We first saw this in the early years of
elementary school when our teachers proclaimed that we are not
permitted to divide by zero. Why not? We can divide by any other
number. Why not zero? If we were permitted to divide by zero, an
easy contradiction could be derived. Since math and science
cannot have contradictions, young fledglings are not permitted to
divide by zero. To summarize, science and mathematics are
products of the human mind and language which we do not permit
to have contradictions. If an assumption leads us to a contradiction
in science or mathematics, then we must abandon the assumption.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

A philosophical interlude on paradoxes

What is gained by looking at self-referential paradoxes from the
categorical point of view? Many have felt that these different
instances of self-referential paradoxes have a similar pattern
(witness Bertrand Russell supposedly inventing the barber
paradox to illustrate Russell’s paradox.) However, no one has ever
formalized this feeling. The major advance that category theory
has to offer the subject is to actually show that all these different
self-referential paradoxes are really instances of a single
categorical theorem. F. William Lawvere described a simple
formalism that showed many of the major self-referential
paradoxes and more. This shows that the logic of self-referential
paradoxes is inherent in many systems. It also shows the unifying
power of category theory.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

A philosophical interlude on paradoxes

Another positive aspect of our categorical formalism. Lawvere
showed us how to have an exact mathematical description of the
paradoxes while avoiding messy statements about what exists and
what does not exist.

In the categorical setting, the barber paradox does not say
that a village with a rule does not exists.

With Russell’s paradox, a category theorist does not say that
a certain collection does not form a set.

Similarly with the heterological paradox, we avoid the silly
analysis as to whether a word exists or not.

Although in our presentation of the paradoxes we mention the way
philosophers have thought about these issues, in our categorical
discussion, we successfully avoid metaphysical gobbledygook. For
this alone, we should be appreciative of the categorical formalism.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities

Let us continue our list of instances of self-referential paradoxes.

At the end of the 19th century Georg Cantor proved some
important theorems about the sizes of sets.

He first showed that every set is smaller than its powerset (set
of subsets). That is, every set S is smaller than the set P(S).

A more categorical way of saying this is that for any set S,
there cannot exist a surjection h : S −! P(S).

Yet another way of saying this, is that for every purported
surjection h : S −! P(S), there will be some subset of S that
will not be in the image of h. One can think of this as a proof
by contradiction: we are going to assume (wrongly) that there
is such a surjection h and derive a contradiction (because we
will find something that is not in the image of h.) Since this is
formal mathematics, no such contradiction can exist and
hence our assumption that such a surjection exists must be
false.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities
Given such an h : S −! P(S), let us define fh : S × S −! 2 for
s, s′ ∈ S as follows

fh(s, s′) =


1 : s ∈ h(s′)

0 : s < h(s′).

Use fh to construct gh as follows

S × S
fh // 2

NOT

��

S

∆
<<

gh
// 2.

The function gh is the characteristic function of the subset Ch ⊆ S
where each element s does not belong to h(s), i.e.,

Ch = {s ∈ S : s < h(s)} ⊆ S.

Notice that fh , gh and Ch depend on h. If we change h, we will get
different functions and sets.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities

We claim that the subset Ch of S is not in the image of h, i.e., Ch is
a “witness” or a “certificate” that h is not surjective. If Ch was in the
image of h, there would be some s0 ∈ S such that h(s0) = Ch . In
that case gh would be represented by fh with s0. That is, for all
s ∈ S

gh(s) = fh(s, s0)

but this would also be true for s0 ∈ S which would mean that

gh(s0) = fh(s0, s0).

However, by the definition of gh , we have that

gh(s0) = NOT(fh(s0, s0)).

Since this cannot be, our assumption that h(s0) = Ch is wrong,
and there is a subset of S that is not in the image of h.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities

Let us look at Cantor’s inequality from a matrix/array point of view.
We write the collection S as {s1, s2, s3, . . .}. The function
fh : S × S −! 2 can be described as the following matrix Notice
that the diagonal is different than every column of the array. This is
a way of saying that the diagonal (which is gh) cannot be
represented by any column of the array.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities

Subset of S

fh h(s1) h(s2) h(s3) h(s4) h(s5) · · ·

E
le

m
en

ts
of

S

s1 NOT(1)=0 0 0 0 1 · · ·

s2 0 NOT(0)=1 0 1 0 · · ·

s3 0 0 NOT(1)=0 0 0 · · ·

s4 1 0 0 NOT(1)=0 0 · · ·

s5 0 1 0 1 NOT(0)=1 · · ·

...
...

...
. . .

The

function fh as a matrix. The function gh represents Ch and is the
changed diagonal. It is different from every column.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities - Resolution

This is part of mathematics and the only resolution for this
paradox is to accept the fact no such surjective h exists and
that |S | < |P(S)|.

Notice that this applies to any set.

For finite S, this is obvious since |S | = n implies |P(S)| = 2n.

However, this is true for infinite S also. What this shows is that
P(S) is a different level of infinity than S.

One can iterate this process and get P(S), P(P(S)),
P(P(P(S))), . . . each of which is at a different level of infinity.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities

Related to the Cantor’s inequality above is the theorem that the set
of natural numbers N = {0, 1, 2, 3, . . .} is smaller than the interval of
all real numbers between 0 and 1, i.e., (0, 1) ⊆ R.

Definition
The infinity that corresponds to the natural numbers is called
countable infinity while any larger infinity — such as the interval
of real numbers — is called uncountable infinity.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities

This proof will be slightly different than the previous examples that
we saw. We include it because it has features that are closer to the
upcoming general theorem. Rather than working with the set
2 = {0, 1}, this proof works with the set 10 = {0, 1, 2, 3, . . . , 9}.
Also, rather than working with the function NOT : 2 −! 2 which
swaps both elements of 2, we now work with the function
α : 10 −! 10 which is defined as follows:

α(0) = 1, α(1) = 2, α(2) = 3, . . . , α(8) = 9, α(9) = 0,

i.e., α(n) = n + 1 Mod 10. The most important feature of α is that
every output is different than its input. There are many such
functions from 10 to 10. We choose this one.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities
The proof that N is smaller than (0, 1) works by showing every
function h : N −! (0, 1) defines a real number in (0, 1) that is not
in the image of h. We can think of this again as a proof by
contradiction. We assume (wrongly) that there is a surjection
h : N −! (0, 1) and come to a contradiction which proves that no
such h can possibly exist.
With such an h we can define a function fh : N × N −! 10 that
describes the decimal expansions of the real numbers that h
describes. For m, n ∈ N,

fh(m, n) = the mth digit of h(n).

This means that fh gives every output digit of the purported
function h. The next Figure will help explain fh . The natural
numbers on the left tell you the position. The function h assigns to
every natural number on the top, a real number below it. The
numbers on the left are the first inputs to fh , and the numbers on
the top are the second inputs to fh .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities

The numbers h(n)

fh 0 1 2 3 4 5 6 · · ·

Po
si

tio
n

0 0 0 0 0 0 0 · · ·

. · · ·

0 0 0 7 2 7 7 4 · · ·

1 0 1 2 2 7 6 7 · · ·

2 0 3 0 3 0 0 0 · · ·

3 0 6 2 0 1 2 0 · · ·

4 0 1 0 2 3 1 3 · · ·

5 0 1 0 3 0 1 5 · · ·

...
...

...
...
. . .

The function fh : N × N −! 10 that describes a purported
surjection h from N to (0, 1).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities
With such an fh , one can go on to describe a function gh with the
— by now familiar — construction

N × N
fh // 10

α

!!

N

∆
<<

gh
// 10

The function gh also depends on h. The next Figure will help
explain the function gh . It is the same as the last Figure but with
the elements along the diagonal changed by α. That is, the nth
digit of the nth number is changed. The changed numbers are the
outputs to the function gh . Thinking of the outputs of gh as the
digits of a real number, we are describing a real number between 0
and 1. We call this number Gh . In our case,

Gh = 0.121142 . . .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities

The number h(n)

fh 0 1 2 3 4 5 6 · · ·

Po
si

tio
n

0 0 0 0 0 0 0 · · ·

. · · ·

0 α(0) = 1 0 7 2 7 7 4 · · ·

1 0 α(1) = 2 2 2 7 6 7 · · ·

2 0 3 α(0) = 1 3 0 0 0 · · ·

3 0 6 2 α(0) = 1 1 2 0 · · ·

4 0 1 0 2 α(3) = 4 1 3 · · ·

5 0 1 0 3 0 α(1) = 2 5 · · ·

...
...

...
...
. . .

The changed diagonal, gh , of a purported surjection h from N to
(0, 1).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities

The claim is that gh is not represented by fh . This means that the
number represented by gh will not be the number represented by
fh(, n0) for any n0. Another way to say this is that the number Gh

will not be any column in the scheme described in the Figure. This
is obviously true.

Gh was formed to be different than the first column because
the number in the first position is different.

It is different than the second column because it was formed
to be different at the second position.

It is different than the third column because it was formed to
be different at the third digit, etc.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities

In terms of self reference, Gh is a real number that says

“This number is not the number in column n because the nth digit
is different from the nth column’s nth digit.”

or

“This number is not in the image of h.”

Conclusion: Gh is not on our list and hence h is not surjective.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Cantor’s Inequalities

Let us show the end of the proof formally. If there was some n0 that
represented gh , then for all m

gh(m) = fh(m, n0)

(i.e., Gh is the same as column no .) But if this was true for all m,
then it is true for n0 also (that is, it is true by every digit including
the one on the diagonal.) But that says that

gh(n0) = fh(n0, n0).

However, gh was defined for n0 as

gh(n0) = α(fh(n0, n0)).

We conclude that no such n0 exists, and gh describes a number in
(0, 1) which is not in the image of h. That is, h cannot be surjective
and the set N is smaller than the set (0, 1).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Main Theorem About Self-Referential Paradoxes

We have seen the same idea over and over in many different
contexts.

All these examples are instances of a single theorem of
category theory.

This again shows the unifying power and versatility of
category theory.

We should note that our examples till now have all been about
sets and set maps.

However, we will see that there are instances of the same
phenomena in other categories.

It pays to describe the theorem in its most general setting.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Main Theorem About Self-Referential Paradoxes

We begin with some needed preliminaries.

Definition
First a simple definition in Set. Consider a set Y and a set function
α : Y −! Y .We call s0 ∈ Y a fixed point of α if α(s0) = s0. That
is, the output is the same (or fixed) as the input. We write the
element s0 by talking about a function p : {∗} −! Y such that
p(∗) = s0. Remember that {∗} is the terminal object in Set and
helps pick out elements of sets. Saying that s0 is a fixed point of α
amounts to saying that α ◦ p = p, i.e., the following diagram
commutes:

{∗}
p

//

p

Y

α
��

Y .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Main Theorem About Self-Referential Paradoxes

Definition
Let us generalize this to any category A with a terminal object 1.
Let y be an object in A and α : y −! y be a morphism in A. Then
we say p : 1 −! y is a fixed point of α if α ◦ p = p.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Main Theorem About Self-Referential Paradoxes

Definition
Let us start in the category of Set.

Remember that if f : S × S −! Y is a set function and s0 is an
element in S, then f(, s0) : S −! Y is a function of one input.

We say g : S −! Y is represented by f if there exists an s0 in
S such that g() = f(, s0).

In other words, for every x in S, we have that g(x) = f(x, s0).

What does it mean for g : S −! Y to not be represented by f?

That means for all s in S, g() , f(, s).

In detail, for all s ∈ S, there is some x in S such that
g(x) , f(x, s).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Main Theorem About Self-Referential Paradoxes

Definition
Let us generalize representability to any category A with a
terminal object 1 and binary products.

We need the isomorphism i : a −! a × 1.

Let f : a × a −! y and g : a −! y be morphisms in A.

Then g is representable by f if there is a morphism p : 1 −! a
such that g = f ◦ (ida × p) ◦ i : a −! y.

We can see this as

a i
�

//

g

&&
a × 1

ida×p
// a × a f // y.

g is not representable if for all p : 1 −! a we have that
g , f ◦ (ida × p) ◦ i.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Main Theorem About Self-Referential Paradoxes

Now for the main theorem as given by Lawvere in 1969.

Theorem
Cantor’s Theorem.

Let A be a category with a terminal object and binary
products.

Let y be an object in the category and α : y −! y be a
morphism in the category.

If α does not have a fixed point, then for all objects a and for
all f : a × a −! y there exists a g : a −! y such that g is not
representable by f .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Main Theorem About Self-Referential Paradoxes

Proof.
Let α : y −! y not have a fixed point, then for any a and for any
f : a × a −! y we can compose f with ∆ and α to form g as follows

a × a f // y
α

��

a

∆
<<

g
// y.

We claim that g is not representable by f . Assume (wrongly) that g
is represented by f with p : 1 −! a.
With a few steps, we get that α has a fixed point:

(f ◦∆ ◦ p) = g ◦ p = α ◦ (f ◦∆ ◦ p).

□

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Turing’s Halting Problem

Let us look at more examples of Cantor’s Theorem in other
categories.

In the early 1930’s, long before the engineers actually created
computers, Alan Turing, the “father of computer science,” showed
what computers cannot do. Loosely speaking, researchers1 proved
that no program can decide whether or not any program will go into
an infinite loop or not. Already from this inexact statement one can
see the self reference: programs deciding properties of programs.

1Most writers attribute the halting problem to Alan Turing. This is historically
not true. He was the first to prove that certain problems were not decidable by
machines, but he did not mention or prove the undecidability of the halting
problem. This was originally done by Martin Davis. See more about this in
Cristian Calude’s book To Halt or Not to Halt: That is the question.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Turing’s Halting Problem

Let us state a more exact version of Turing’s theorem. First some
preliminaries.

Programs come in many different forms.

Here we are concerned with programs that only accept a
single natural number as input.

To every such program, there is a unique natural number that
describes that program.

In order to see this, realize that all computer programs are
stored as a binary string. Every binary string can be seen as a
natural number.

We call the program associated with the natural number n,
“program n”.

This idea — that programs which act on numbers can be
represented by numbers — shows that programs can be self
referential.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Turing’s Halting Problem

Programs that accept a single number can halt or they can go into
an infinite loop. The halting problem asks for a program to accept
a program and a number and determine if that program with that
number will halt or go into an infinite loop. To be more exact, the
halting problem asks for two numbers (i) a number of a program
that accepts a single number and (ii) an input to that program.
Turing’s theorem says that no such program can possibly exist.
This is not a limitation of modern technology or of our current
ability. Rather, this is an inherent limitation of computation.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Turing’s Halting Problem

The proof is, once again, a proof by contradiction. Assume
(wrongly) that there does exist a program that accepts a program
number and an input, and can determine if that program will halt or
go into an infinite loop when that number is entered into that
program. Formally, such a program will describe a total computable
function, i.e., a morphism in CompFunc. The function named
Halt : N × N −! Bool defined on natural numbers m, n ∈ N is

Halt(m, n) =


1 : if input m into program n halts

0 : if input m into program n goes into an infinite loop.

This function can be described by the chart in the next slide where
the natural numbers on the top are the number of the programs
and the numbers on the left are the input numbers. The numbers
in the chart tell the value of Halt .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Turing’s Halting Problem

Program

Halt 0 1 2 3 4 5 · · ·

In
pu

t
0 0 1 0 0 0 1 · · ·

1 1 1 1 1 1 1 · · ·

2 0 1 0 0 0 0 · · ·

3 0 1 0 0 1 0 · · ·

4 0 0 1 1 1 1 · · ·

5 1 0 1 0 1 1 · · ·

...
...

...
. . .

A purported halting function.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Turing’s Halting Problem

It is not hard to see that the function ∆: N −! N × N defined
as ∆(n) = (n, n) is a computable function. That is, one can
program a computer to accept a single number and output the
pair of the same numbers.

Consider the partial NOT function ParNOT : Bool −! Bool
defined as follows:

ParNOT(n) =


1 : if n = 0

" : if n = 1

where " means it will go into an infinite loop. The ParNOT is
also a computable function.

Since Halt is assumed computable, and the function ∆ and
ParNOT are computable, then their composition is also
computable function.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Turing’s Halting Problem

N × N
Halt // Bool

ParNOT

##

N

∆
<<

Halt ′
// Bool

It is important to stress that this diagram is in CompFunc and not
in Set. The new computable function, Halt ′, accepts a number n
as input and does the opposite of what program n on input n does.
That is, if program n on input n halts, then Halt ′(n) will go into an
infinite loop. Otherwise, if program n on input n goes into an infinite
loop, then Halt ′(n) will halt. In terms of self reference, Halt ′

describes a program that the does the opposite of what program n
is supposed to do on input n. We can see the way Halt ′ is defined
with the chart on the next slide.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Turing’s Halting Problem

Program

Halt 0 1 2 3 4 5 · · ·

In
pu

t

0 α(0) = 1 1 0 0 0 1 · · ·

1 1 α(1) =" 1 1 1 1 · · ·

2 0 1 α(0) = 1 0 0 0 · · ·

3 0 1 0 α(0) = 1 1 0 · · ·

4 0 0 1 1 α(1) =" 1 · · ·

5 1 0 1 0 1 α(1) =" · · ·

...
...

...
. . .

The changed diagonal of the purported halting function, where
α = ParNOT .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Turing’s Halting Problem

Since Halt ′ is a computable function, the program for this
computable function must have a number and be somewhere on
our list of computable functions. However, it is not. Halt ′ was
formed to be different than every column in the chart. What is
wrong? We know that ∆ and ParNOT are computable. We
assumed that Halt was computable. It must be our assumption of
the computability of the the Halt function was wrong and Halt is
not computable.

Let us formally show that Halt ′ is different than every column in the
chart. Imagine that Halt ′ is computable and the number of Halt ′ is
n0. This means that Halt ′ is the n0 column of our chart.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Turing’s Halting Problem
Another way to say this is that Halt ′ is representable by
Halt(, n0), i.e., for all n,

Halt ′(n) = Halt(n, n0).

Now let us ask about Halt ′(n0)? We get

Halt ′(n0) = Halt(n0, n0).

But we defined Halt ′(n0) to be

Halt ′(n0) = ParNOT(Halt(n0, n0))

so we have a contradiction.
In a sense, we can say that the computational task that Halt ′ (and
in particular Halt ′(n0)) performs is:

“If you ask whether this program will halt or go into an infinite loop,
then this program will give the wrong answer.”

Since computers cannot give the wrong answer, Halt ′ cannot exist
and hence Halt cannot exist.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Contrapositive of the Main Theorem

Cantor’s theorem is very important and we need to express it in
many equivalent ways. Let us consider the contrapositive of
Cantor’s theorem.

In less technical terms, the matrix form of Cantor’s theorem says:

If α does not have a fixed point, then the diagonal — which is
changed by α— is different than every column in the matrix.

The contrapositive then says:

If α forms a changed diagonal that is the same as some
column, then the point where the diagonal and the column
meet will be a fixed point of α.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Contrapositive of the Main Theorem

The intuition for the contrapositive can be viewed in the next slide.
The function g uses α and forms the changed diagonal of the
matrix. The fact that g is representable by some column, say p,
means that they are two ways of talking about the same thing: as a
diagonal and as a column. At the crossing point, there is a fixed
point where α(f(p, p)) = f(p, p).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Contrapositive of the Main Theorem

Second Input

f p · · ·

Fi
rs

tI
np

ut

α f(, p) · · ·

α f(, p) · · ·

α f(, p) · · ·

α f(, p) · · ·

p αf(p, p) = f(p, p) · · ·

f(, p) α · · ·

...
...

... f(, p)
. . .

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Contrapositive of the Main Theorem

With this intuition in hand, let us state the contrapositive.

Theorem

Let A be a category with a terminal object and binary
products.

Let y be an object in the category and α : y −! y be a
morphism in the category.

If there is an object a and a morphism f : a × a −! y, such
that g = α ◦ f ◦∆ is representable by f , then α has a fixed
point.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Contrapositive of the Main Theorem

Proof.
Let A, a, and f be as described in the theorem. Let g = α ◦ f ◦∆
be representable by p : 1 −! a, i.e., g = f ◦ (ida × p) ◦ i (where i is
the isomorphism a −! a × 1.) This commutative diagram is
helpful:

1

∆◦p

88

p
// a i

�
//

g

&&
a × 1

ida×p
// a × a f // y

□

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

The Contrapositive of the Main Theorem

Proof.
Since g is represented by f , and g is defined as g = α ◦ f ◦∆, we
have both equalities

f ◦ (ida × p) ◦ i = g = α ◦ f ◦∆.

Precomposing all three maps by p (i.e., plugging p into the
equations) gives us

f ◦ (ida × p) ◦ i ◦ p = g ◦ p = α ◦ (f ◦∆ ◦ p).

The left side shortens to

(f ◦∆ ◦ p) = g ◦ p = α ◦ (f ◦∆ ◦ p).

And here we see that f ◦∆ ◦ p is a fixed point of α. □

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Fixed Points in Logic

When we apply the contrapositive of Cantor’s theorem to find fixed
points in logic. First, some elementary logic.

We are working in a system that can handle basic arithmetic.

We will deal with logical formulas that accept at most one
value which is a number.

A logical formula that accepts one value will be called a
predicate and will be written as A(x), B(x), C(x), etc.

A logical formula that accepts no value (and hence is true or
false) will be called a sentence and will be written as A , B,
and C etc.

Rather than considering the set of all predicates and the set of
all sentences, we will be interested in equivalence classes of
these sets.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Fixed Points in Logic

Since logical formulas are made out of a finite string of symbols
(like programs), all logical formulas can be encoded as a natural
number. We will write the natural number of a logical formula A(x)
as ⌜A(x)⌝ and the number of a sentence A as ⌜A⌝. By assigning
a number to each formula, formulas can be made inputs to
formulas. That means that logical formulas about numbers can
then evaluate logical formulas about numbers. It is these numbers
that will help logical formulas about numbers be self-referential.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Fixed Points in Logic

We are going to get fixed points of logical predicates.

Theorem

For every logical predicate that takes a number, E(x), there is a
way of constructing a fixed point which is a logical sentence C
such that

E(⌜C⌝) ≡ C

The process that goes from a E(x) to C is called a fixed point
machine. In a sense, C is a logical sentence that says

“This logical statement has property E.”

With this fixed point machine we will find some of the most
fascinating aspects of logic. These slides will skip the proof of the
fixed point theorem and go directly to the applications.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Gödel’s Incompleteness Theorem

Now let us use this fixed-point machine for some interesting
predicates E(x) and get self-referential statements. First some
ideas about logic. Not only can we assign a unique number to
every predicate and to every sentence, we can also assign a
unique number to every statement in logic. This follows from the
fact that statement are sequences of symbols. Every symbol can
be given a unique number and every sequence of numbers can be
given a unique number. Similarly, we can assign a unique natural
number to every proof. After all, a proof is a sequence of
statements. The numbers assigned to statements and proof are
called the Gödel numbers of those statements and proofs.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Gödel’s Incompleteness Theorem
Let Prov(x, y) be the two place predicate that is true when “y is the
Gödel number of a proof of a statement whose Gödel number is
x”. Now we form the statement

E(x) = (∀y)¬Prov(y, x).

This is true for x when no number y is a proof of statement x, i.e.,
this is true for statement x when no proof of x exists. With the fixed
point machine, we find a statement G (for Gödel) such that

G ≡ E(⌜G⌝) = (∀y)¬Prov(y, ⌜G⌝)

G is a logical statement that essentially says

“This statement is not provable for any proof y”

or succinctly

“This statement is unprovable.”

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Gödel’s Incompleteness Theorem

Let us assume that the logical system is sound (i.e., you cannot
prove false statements). If G was false then there would be a proof
of G and hence there would be a proof of a false statement. In that
case the system is not sound. On the other hand, if G is true, then
it essentially says that G is true but unprovable.
This is one of the most important theorems in twentieth century
mathematics and it is worthwhile to spend a few minutes
meditating on its significance. Before Gödel came along, it was
believed that any statement that is true is also provable. After
Gödel, we can see that the set of provable statements is a proper
subset of the set of statements that are true. There are statements
that are true which cannot be proven within the particular system.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Gödel’s Incompleteness Theorem

True = Provable True

Provable

Gödel sentence

On the left: what was believed before Gödel’s Theorem. On the
right: what we know after Gödel’s Theorem.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Tarski’s Theorem

Alfred Tarski’s theorem shows that a logical system cannot tell
which of its predicates are true. Assume (wrongly) that there is
some logical predicate T (x) that accepts a number and tells if the
statement of that number is true. This formula will be true when “x
is the Gödel number of a true statement in the theory”. We can
then use T (x) to form the statement

E(x) = ¬T (x)

This says that E(x) is true when T (x) is false. Now place E(x) into
the fixed point machine. We will get a statement C such that

C ≡ E(⌜C⌝) = ¬T (⌜C⌝).

The logical sentence C essentially says

“This statement is false.”

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Tarski’s Theorem

It is a logical version of the liar paradox. Logical sentence C is true
if and only if it is false. A logical system cannot be consistent and
have such a statement. The only assumption we made was that
T (x) can be formulated in the language of the system. It follows
that this assumption is false. So while Gödel showed us that
certain logical systems have limitations with respect to the notion
of provability, Tarski showed us that those logical systems cannot
deal with their own truthfulness.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Parikh Sentences

Rohit Parikh used the fixed point machine to formulate some
fascinating sentences that express properties about the length of
proofs. Consider the two-place predicate Prflen(m, x) which is true
if “there exists a proof of length m (in symbols) of a statement
whose Gödel number is x.” A computer can actually decide if this
is true or false because there are only a finite number of proofs of
length m. Now consider the logical formula

En(x) = ¬(∃m < n Prflen(m, x)).

The statement En(x) is true if the formula with Gödel number x
does not have a proof whose length is less than n. With the fixed
point machine, we find a sentence Cn that satisfies

Cn ≡ En(⌜Cn⌝) = ¬(∃m < n Prflen(m, ⌜Cn⌝)).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Parikh Sentences

The logical sentence Cn essentially says

“This statement does not have a proof of length less than n.”

As long as the logical system is sound, Cn will be true and will not
have a proof of length less than n. This is interesting in itself,
however, Parikh went further. He showed that although Cn does
not have a short proof (you can make n as large as you want,)
there does exist a short proof of the fact that Cn is provable. With
the predicate P(x) = ∃yProv(y, x), we will show that although
there is no short proof of Cn, there is a short proof of P(⌜Cn⌝).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Parikh Sentences

The short proof is basically a formalization of the following short
argument.

1 If Cn does not have any proof, then Cn is true, i.e.,
¬P(⌜Cn⌝) −! Cn.

2 If Cn is true, we can check all proofs of length less then n and
prove Cn, i.e., Cn −! P(⌜Cn⌝)

3 From 1 and 2, we have shown that if Cn does not have a proof
then we can prove Cn, i.e., ¬P(⌜Cn⌝) −! P(⌜Cn⌝). (This is
not a contradiction. It just shows that ¬P(⌜Cn⌝) cannot be
true.)

4 We conclude that there is a proof of Cn, i.e., P(⌜Cn⌝).

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Parikh Sentences

Parikh went even further. He iterated P such that
Pt(A) = P(⌜Pt−1(A)⌝) and for every C there is a sequence

P0(⌜C⌝) = C , P1(⌜C⌝), P2(⌜C⌝), . . . , Pk (⌜C⌝),

Parikh then showed that for every k there is a formula Ck
n that does

not have a short proof, nor does the fact that it is provable have a
short proof, nor that it is provable that it is provable ... have a short
proof. However, eventually it will have a short proof. In symbols:
There is no short proof of Pt(⌜Ck

n ⌝) for t < k but there is a short
proof of Pk (⌜Ck

n ⌝). This is just one of the many gems found in
Rohit Parikh’s papers.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Epimenides paradox

Before we close this mini-course it pays to look at two famous
paradoxes that are not exactly instances of Cantor’s theorem but
are close enough that they are easy to describe. The two
examples are (i) the Epimenides paradox (which is related to the
liar’s paradox) and (ii) the time travel paradox.
Chronologically, the granddaddy of all the self-referential
paradoxes is the Epimenides paradox. Epimenides (6th or 7th
century BC), a philosopher from Crete, was a curmudgeon who did
not like his neighbors in Crete. He is quoted as saying that “All
Cretans are liars.” The problem is that Epimenides himself is a
Cretan. He is talking about himself and his statement. If his
statement is true, then this very utterance is also a lie and hence is
not true. On the other hand, if what he is saying is false, then he is
not a liar and what he said is true. This seems to be a
contradiction.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Epimenides paradox

On deeper analysis, one sees that Epimenides’ utterance is not a
contradiction. If it is true that all Cretans are liars, that does not
mean that every sentence that every Cretan ever made is false. A
liar is someone who lied once; not necessarily someone who lies
all the time. We have all lied and hence we are all liars! So the
statement could be true and it will not negatively effect his own
statement. On the other hand, if the statement is false, that implies
that there is at least one pious Cretan who always tells the truth all
the time. Presumably Epimenides thinks that he is that righteous
truth teller. The statement could be true or false and it will not be a
contradiction.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Epimenides paradox

Even though the paradox of Epimenides is flawed, there are other
similar types of sentences that are paradoxical. The sentences

“I always lie.”

“This sentence is false.”

“The only sentence that is in boldface on this page is not
true.”

are all declarative statements that are true if and only if they are
false and hence they are contradictions. They are simple examples
of paradoxical statements. There are many such statements and
they are all instances of the Liar Paradox.
Let’s back up a little and see what it going on here. Consider the
statement “This sentence is false.” It is an English sentence that
refers to itself. Usually a declarative sentence refers to some
object. For our purpose, language gets interesting because a
sentence has the ability to refer to itself.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Epimenides paradox

Here are true sentences that refer to themselves:

“This sentence has five words.”

“This sentence is in italics.”

“This is an example of a sentence that shows no originality.”

There are also false sentences that refer to themselves:

“This sentence has six words.”

“This sentence is in italics.”

“This is an example of a sentence that shows originality.”

“The world will little note, nor long remember what we say
here...” (from Abraham Lincoln’s Gettysburg Address —
arguably one of the most famous speeches ever made.)

The liar paradoxes are about sentences that go further. They are
not false statements about themselves. Rather they are sentences
that negate themselves.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Epimenides paradox
Let’s look at the self reference of language in a formal way. There
is a set of English sentences which we call Sent . We can describe
a function f : Sent × Sent −! 2. The function f is defined for
sentences s and s′ as

f(s, s′) =


1 : s is negated by s′

0 : s is not negated s′.

We are interested in sentences that (do not negate other
sentences but) negate themselves. In order to deal with such
sentences we are going to compose f with the function ∆ and
NOT as follows

Sent × Sent
f // 2

NOT

��

Sent

∆
88

g
// 2.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Epimenides paradox

The value g(S) is defined as NOT(f(S,S)). The function g is the
characteristic function of the subset of sentences that negate
themselves. Till here, we have been mimicking the set-up of
Cantor’s theorem. However, this is where the resemblance stops.
It is not clear what we would mean by talking about g being
representable by f . What would it mean for a sentence S to
represent a subset of sentences? Nevertheless, the sentences
that negate themselves are declarative sentences that are
contradictions.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Time Travel Paradoxes

A significant amount of science fiction is about time travel
paradoxes. If time travel was possible, a time traveler might go
back in time and shoot his bachelor grandfather, guaranteeing that
the time traveler was never born. Homicidal behavior is not
necessary to achieve such paradoxical results. The time traveler
might just make sure that his parents never meet, or he might
simply go back in time and make sure that he does not enter the
time machine. These actions would imply a contradiction and
hence cannot happen. The time traveler should not shoot his own
grandfather (moral reasons notwithstanding) because if he shoots
his own grandfather, he will not exist and will not be able to travel
back in time to shoot his own grandfather. So by performing an
action he is guaranteeing that the action cannot be performed. The
event of shooting your own bachelor grandfather is self-referential.
Usually, one event affects other events, but here an event affects
itself. Since the physical universe does not permit contradictions,
we must deny the assumption that time travel exists.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Time Travel Paradoxes

By now it is easy to formalize this paradox. There is a collection,
Events, of all physical events. There is a function
f : Events × Events −! 2 which is defined for two events e and e′

as

f(e, e′) =


1 : if e is negated by e′

0 : if e is not negated e′.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Time Travel Paradoxes
Some events negate other events and some events do not. If e
and e′ are not in each other’s space-time cone then they will not
effect each other. We now move on to describe the subset of all
physical events that negate themselves in the usual way:

Events × Events
f // 2

NOT

��

Events

∆
66

g
// 2.

The function g is the characteristic function of those events that
negate themselves. Such events cannot exist. Till here the pattern
has been the same with Cantor’s theorem. However, we do not go
on to talk about representing g by f . What would it mean for
f(, e) to represent a subset of events? While time travel
paradoxes do not necessarily fit into Cantor’s theorem, there is a
sense of self-reference here and the events described by g cannot
possibly exist.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Time Travel Paradoxes

Is there a resolution to the time travel paradox? Since events are
part of the physical world, the obvious resolution is that time travel
is not a possibility. However, we need not be so drastic. We can be
a little subtle. Einstein’s theory of relativity tells us that time travel
is not possible in the usual way we think of the universe. However,
Einstein’s friend and neighbor, Kurt Gödel, wrote an interesting
paper on relativity theory. The paper constructed a model of the
universe in which time travel would be possible. In this “Gödel
universe” it would be very hard, but not impossible, for time travel
to be a reality. Gödel, the greatest logician of the past thousand
years, was aware of the logical problems of time travel.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Time Travel Paradoxes

A writer, Rudy Rucker, tells of an interview with Gödel in which
Rucker asks about the time-travel paradoxes. Gödel responded by
saying “Time-travel is possible, but no person will ever manage to
kill his past self ... The a priori is greatly neglected. Logic is very
powerful.” That means that the universe simply will not allow you to
kill your past self. Just as the barber paradox shows that certain
villages with strict rules cannot exist, so too the physical universe
will not allow you to perform an action that will cause a
contradiction. This leads us to even more mind-blowing questions.
What would happen if someone took a gun back in time to shoot
an earlier version of himself? How will the universe stop him? Will
he not have the free will to perform the dastardly deed? Will the
gun fail to shoot? If the bullet fires and is properly aimed, will the
bullet stop short of his body? It is indeed bewildering to live in a
world with self reference.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

Self-Referential Paradoxes

Our tour is over. We hoped you enjoyed it!

Next stop: Chapter 4. How different categories relate with each
other.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Sec. 3.4: Mini-course: Self-Referential Paradoxes

